The focus of this contribution is to highlight the challenges of chemical recycling of End-of-Life glass fiber composite (GFRP) waste from wind turbine blades utilizing solvolysis/HTL (hydrothermal liquefaction) methods based on subcritical water as solvent. A multitude of investigations have been published during the years regarding solvolysis of newly produced composite laminates and known thermoset composition (epoxy, polyester, and vinyl ester). However, a real wind turbine blade is more complex and constitutes of thermosets, thermoplastics, and other materials such as balsa wood. It is a very challenging task to separate these materials from each other within the wind turbine blade structure, so the premise for recycling is a mixed waste stream where little is known about the chemical composition. In the present study, the solvolysis process for GFRPs based on sub/supercritical water at 250-370 C and 100-170 bar process conditions with catalyst (acid and base) and additives (alcohols and glycols) was studied and optimized. The samples used are representative for End-of-Life wind turbine blades. The aim is therefore to investigate if it is possible to develop a general process that can accept all material constituents in a real wind turbine blade, resulting in recycled glass fibers and a hydrocarbon fraction that can be used as a refinery feedstock.