Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
3DinSAR: Object 3D localization for indoor RFID applications
Beijing University of Technology, China.
Beijing University of Technology, China.
RISE, Swedish ICT, SICS.
RISE, Swedish ICT, SICS. Uppsala University, Sweden.
2016 (English)In: 2016 IEEE International Conference on RFID, RFID 2016, Institute of Electrical and Electronics Engineers Inc. , 2016Conference paper, Published paper (Refereed)
Abstract [en]

More and more objects can be identified and sensed with RFID tags. Existing schemes for 2D indoor localization have achieved impressing accuracy. In this paper we propose an accurate 3D localization scheme for objects. Our scheme leverages spatial domain phase difference to estimate the height of objects which is inspired by the phase-based Interferometric Synthetic Aperture Radar (InSAR) height determination theory. We further leverage a density-based spatial clustering method to choose the most likely position and show that it improves the accuracy. Our localization method does not need any reference tags. Only one antenna is required to move in a known way in order to construct the synthetic arrays to implement the locating system. We present experimental results from an indoor office environment with EPC C1G2 passive tags and a COTS RFID reader. Our 3D experiments demonstrate a spatial median error of 0.24 m. This novel 3D localization scheme is a simple, yet promising, solution. We believe that it is especially applicable for both portable readers and transport vehicles.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc. , 2016.
Keywords [en]
3D, Indoor Localization, InSAR, Phase Based, UHF RFID, Synthetic aperture radar, Density-Based Spatial Clustering, Height determination, Interferometric synthetic aperture radars, Localization method, Indoor positioning systems
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:ri:diva-43925DOI: 10.1109/RFID.2016.7488026Scopus ID: 2-s2.0-84978682903ISBN: 9781467388078 (print)OAI: oai:DiVA.org:ri-43925DiVA, id: diva2:1392991
Conference
2016 IEEE International Conference on RFID, RFID 2016, 2 May 2016 through 5 May 2016
Available from: 2020-02-14 Created: 2020-02-14 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus
By organisation
SICS
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf