The advantage of using thin plies is a well-known feature in laminated composite plates, since the homogenized properties usually improve, and in turn, the performance of the structure. In the literature, several works deal with the study of the ply thickness effect for different structures and loading conditions. However, fewer studies have been performed to understand the structure response under out-of-plane loading, such as the low-velocity impact event. The apparition of high quality manufactured ultra-thin plies, such as the composite material product TeXtreme of Oxeon AB, requires a detailed analysis of their damage resistance and tolerance performance under impact loading. The present work deals with a discussion of a large experimental test campaign of drop-weight impact tests and Compression After Impact (CAI) tests on ultra-thin ply based composite laminates. The composite material analysed is a plain-weave fabric with HTS45 fibers and 20 mm wide yarns, used with HexFlow RTM 6 mono-component epoxy system, and manufactured out-of-autoclave. Two ply thicknesses are considered: 0.08 mm and 0.16 mm. For each case, the same laminate thickness and stacking sequence is considered in order to define the same in-plane stiffness. The study considers different impact energy levels.