Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Scheduling of Parallel Tasks with Proportionate Priorities
Information Technology University, Pakistan.
Marmara University, Turkey.
RISE, Swedish ICT, SICS.ORCID iD: 0000-0002-9431-5139
KTH Royal Institute of Technology, Sweden.
Show others and affiliations
2016 (English)In: Arabian Journal for Science and Engineering, ISSN 2193-567X, Vol. 41, no 8, p. 3279-3295Article in journal (Refereed) Published
Abstract [en]

Parallel computing systems promise higher performance for computationally intensive applications. Since programmes for parallel systems consist of tasks that can be executed simultaneously, task scheduling becomes crucial for the performance of these applications. Given dependence constraints between tasks, their arbitrary sizes, and bounded resources available for execution, optimal task scheduling is considered as an NP-hard problem. Therefore, proposed scheduling algorithms are based on heuristics. This paper presents a novel list scheduling heuristic, called the Noodle heuristic. Noodle is a simple yet effective scheduling heuristic that differs from the existing list scheduling techniques in the way it assigns task priorities. The priority mechanism of Noodle maintains a proportionate fairness among all ready tasks belonging to all paths within a task graph. We conduct an extensive experimental evaluation of Noodle heuristic with task graphs taken from Standard Task Graph. Our experimental study includes results for task graphs comprising of 50, 100, and 300 tasks per graph and execution scenarios with 2-, 4-, 8-, and 16-core systems. We report results for average Schedule Length Ratio (SLR) obtained by producing variations in Communication to Computation cost Ratio. We also analyse results for different degree of parallelism and number of edges in the task graphs. Our results demonstrate that Noodle produces schedules that are within a maximum of 12 % (in worst-case) of the optimal schedule for 2-, 4-, and 8-core systems. We also compare Noodle with existing scheduling heuristics and perform comparative analysis of its performance. Noodle outperforms existing heuristics for average SLR values. 

Place, publisher, year, edition, pages
Springer Verlag , 2016. Vol. 41, no 8, p. 3279-3295
Keywords [en]
Directed acyclic graph (DAG), List scheduling, Multicore, Multiprocessor, Parallel computing, Static task scheduling
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-41860DOI: 10.1007/s13369-016-2180-9Scopus ID: 2-s2.0-84976530428OAI: oai:DiVA.org:ri-41860DiVA, id: diva2:1377775
Available from: 2019-12-12 Created: 2019-12-12 Last updated: 2019-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Popov, Konstantin

Search in DiVA

By author/editor
Popov, Konstantin
By organisation
SICS
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9