One way to support the development of new safety practices in testing and field failure situations of electric vehicles and their lithium-ion (Li-ion) traction batteries is to conduct studies simulating plausible incident scenarios. This paper focuses on risks and hazards associated with venting of gaseous species formed by thermal decomposition reactions of the electrolyte and electrode materials during thermal runaway of the cell. A test set-up for qualitative and quantitative measurements of both major and minor gas species in the vented emissions from Li-ion batteries is described. The objective of the study is to measure gas emissions in the absence of flames, since gassing can occur without subsequent fire. Test results regarding gas emission rates, total gas emission volumes, and amounts of hydrogen fluoride (HF) and CO2 formed in inert atmosphere when heating lithium iron phosphate (LFP) and lithium nickel-manganese-cobalt (NMC) dioxide/lithium manganese oxide (LMO) spinel cell stacks are presented and discussed. Important test findings include the large difference in total gas emissions from NMC/LMO cells compared to LFP, 780 L kg−1 battery cells, and 42 L kg−1 battery cells, respectively. However, there was no significant difference in the total amount of HF formed for both cell types, suggesting that LFP releases higher concentrations of HF than NMC/LMO cells. © 2019 by the authors.