Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bare Field Joint for Subsea Pipelines, a Possible Alternative?
SAIPEM SA, France.
TOTAL, France.
RISE - Research Institutes of Sweden (2017-2019), Materials and Production, KIMAB. (Institut de la Corrosion)
RISE - Research Institutes of Sweden (2017-2019), Materials and Production, KIMAB. (Institut de la Corrosion)ORCID iD: 0000-0001-8721-8560
Show others and affiliations
2018 (English)In: NACE - International Corrosion Conference SeriesVolume 2018-April, 2018Corrosion Conference and Expo 2018; Phoenix; United States; 15 April 2018 through 19 April 2018;, National Assoc. of Corrosion Engineers International , 2018Conference paper, Published paper (Refereed)
Abstract [en]

In the present context of oil price down turn and enhanced competitiveness, cost saving becomes more important than ever. As part of cost reduction solutions in offshore projects, it may be envisaged to leave field joints bare on subsea pipelines instead of applying a field anticorrosion coating after welding of the joints on board the laying vessels. This approach would need to be applied to specific cases, where it would lead to reduction of cycle time and consequently laying rate improvement during offshore installation campaigns when field joint coating activities are on the critical path, like with pipeline J-laying method. Although cathodic protection is an efficient, reliable and field proven method for seawater corrosion prevention on steel exposed areas of subsea coated pipelines, a quantitative assessment of the long term behavior of the pipeline coating at the transition zone with the bare field joint is recommended in order to support such a radical change in the pipeline external corrosion protection philosophy. Therefore, a bespoke experimental setup was designed to simulate bare field joint configuration under cathodic protection over a long term exposure in seawater together with long term cathodic disbondment tests for comparative purpose. The bespoke experimental test was performed at full scale on 3LPE coated pipe section with a field joint area left bare and protected by galvanic anodes. The pipe was immersed in a vessel containing renewed seawater and half-buried in mud to reproduce actual pipelines exposure on seabed. It was heated also with an internal fluid at 65°C to simulate actual operating conditions. Long term cathodic disbondment tests were performed on 3LPE coated pipe samples with internal heating of the samples at 23°C and at 65°C. Reference samples without CP were also exposed to the same conditions. The two experimental works were conducted during 12 months. For each of the tests above, a visual assessment was performed at regular intervals together with a quantitative assessment of the disbonded area (removal and recording of disbonded coating area). With these tests, it was possible to characterize the influence, over the time (up to one year) of the temperature over the normalized cathodic disbondment test results. The effect of the cathodic protection was also evaluated. For the full scale test evaluation and characterization, comparison was made between the disbonded coating length in the mud and the seawater exposure conditions. Correlation between cathodic disbondment tests and full scale test was also drawn. In light of the results obtained so far in this study, these tests results conclude positively that the bare field joint alternative concept for subsea pipelines is possible upon certain operating temperature limitation.

Place, publisher, year, edition, pages
National Assoc. of Corrosion Engineers International , 2018.
Keywords [en]
Bare field joint, Coating disbondment, Cost reduction, Offshore pipelines, Subsea cathodic protection, Cathodic protection, Corrosion prevention, Pipeline corrosion, Seawater corrosion, Steel corrosion, Temperature, Testing, Water pipelines, Alternative concepts, Cathodic disbondment, Joint configuration, Offshore installations, Operating condition, Operating temperature, Quantitative assessments, Corrosion resistant coatings
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-40005Scopus ID: 2-s2.0-85053562445ISBN: 9781510864405 (print)OAI: oai:DiVA.org:ri-40005DiVA, id: diva2:1361579
Conference
NACE - International Corrosion Conference Series Volume 2018-April, 2018 Corrosion Conference and Expo 2018; Phoenix; United States; 15 April 2018 through 19 April 2018;
Available from: 2019-10-16 Created: 2019-10-16 Last updated: 2023-05-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Larché, Nicolas

Search in DiVA

By author/editor
Larché, Nicolas
By organisation
KIMAB
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 162 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf