Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applicationsShow others and affiliations
2010 (English)In: Materials and corrosion - Werkstoffe und Korrosion, ISSN 0947-5117, E-ISSN 1521-4176, Vol. 61, no 5, p. 412-420Article in journal (Refereed) Published
Abstract [en]
Panels coated by hot dipping with zinc (HDG), Zn-5Al (Galfan) and Zn-1.5Al- 1.5Mg coatings at different thicknesses were phosphated and painted on an industrial line. Crevice panels with non-painted bare parts modelling conditions in hem flanges, reference panels with open surfaces and formed non-painted panels were exposed to a cyclic accelerated automotive test. Zn-Al-Mg coatings with the thickness of 10 μ rovided similar or even better protection than HDG and Galfan at 20 mmin both confined and open configurations. In comparison to 10-μm HDG, the Zn-Al-Mg coating delayed red rust appearance in crevices by a factor of 2 and the maximal depth of corrosion in the steel substrate was by 42% lower. Confined areas were more corroded than open surfaces. For HDG, the time to red rust appearance dropped by 50-75%, corrosion attack in steel was from 3.5 to 7 times deeper and mass gain was about 2.3 times higher in crevices than on open surfaces. Corrosion of Zn-Al-Mg may be more affected by local environmental conditions created by the crevice configuration than for HDG. Red rust appearance on formed panels of 20-mm Galfan, 7-, 10- and 14-mm Zn- Al-Mg was delayed to 10-μm HDG by a factor of 2.8, 3.5, 3.8 and >4.5, respectively. No adverse effect of forming was noticed. The results indicate that 2- to 3-fold reduction of the coating thickness for Zn-Al-Mg alloy coatings in comparison to traditional HDG may be possible without compromising the corrosion performance.
Place, publisher, year, edition, pages
2010. Vol. 61, no 5, p. 412-420
Keywords [en]
Adverse effect, Al-Mg alloy, Automotive applications, Coating thickness, Confined areas, Corrosion attack, Corrosion performance, Environmental conditions, Hot dipping, Mass gain, Rust appearance, Steel substrate, Coatings, Corrosion, Thickness measurement, Zinc, Zinc alloys, Zinc coatings, Aluminum
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:ri:diva-40423DOI: 10.1002/maco.200905425Scopus ID: 2-s2.0-77952993874OAI: oai:DiVA.org:ri-40423DiVA, id: diva2:1361399
2019-10-162019-10-162023-05-16Bibliographically approved