A finite element framework has been proposed that can be used to simulateboth empty paperboard packages and package filled with plastic granulates. A Gabletop package was made of a commercial paperboard, and material properties neededin the material model was determined. Two simulations were performed, a drop testand a compression test. By comparison between experimental and numerical results,the deformation mechanisms at impact could be identified and correlated to materialproperties. When the package was filled with granulates different mechanisms wasactivated compared to an empty package. The granulates contribute to bulging ofthe panels, such that the edges became more load bearing compared to the panels.When the edges carried the loads the importance of the out-of-plane properties alsoincreased, and local failure initiation related to delamination was observed. Comparison between experimental and numerical impact forces show that there are still important things to consider in the model generation, e.g. variation of properties withinthe package, which originate both from material property variations and the loadinghistory, e.g. during manufacturing and handling.