Within the industry there exists great experience of producing moulded pulp trays,this includes adjusting process parameters to achieve a consistent output from thetray making machines. However, the evaluation of the results is at this point based onhands on methods that ultimately relies on subjective opinions of what makes a goodtray. This includes visual inspection of the trays, as well as a twisting the trays by handto evaluate stiffness. Such methods might suffice to achieve a consistent output, butare not suited for structured development work, which requires objective measures.One obvious measurement is a compression test, like a box compression test. However, this test does not tell the whole story, and differs from the hands-on tests usedtoday. Because of this a twist test was developed to emulate the hands-on testingpresently used to assess the quality of moulded pulp trays. The test is performed in atensile tester, by putting the tray in a sample holder which supports two diagonal bottom corners while a beam is pressing against the opposite upper diagonal corners.This forces the tray to bend.Plotting the results from these two tests against each other, results in a practicalgraph that can be used to evaluate both pulp and process properties, as well as trayweights. This plot reveals that some information remains hidden if only compressiontests are performed.Finally, such a graph lends itself to define boundaries for what is an acceptable tray.