Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bioactive Silk Coatings Reduce the Adhesion of Staphylococcus aureus while Supporting Growth of Osteoblast-like Cells.
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
Stockholm University, Sweden.
RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.ORCID iD: 0000-0002-4122-732x
Show others and affiliations
2019 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252Article in journal (Refereed) Epub ahead of print
Abstract [en]

Orthopedic and dental implants are associated with a substantial risk of failure due to biomaterial-associated infections and poor osseointegration. To prevent such outcomes, a coating can be applied on the implant to ideally both reduce the risk of bacterial adhesion and support establishment of osteoblasts. We present a strategy to construct dual-functional silk coatings with such properties. Silk coatings were made from a recombinant partial spider silk protein either alone (silkwt) or fused with a cell-binding motif derived from fibronectin (FN-silk). The biofilm-dispersal enzyme Dispersin B (DspB) and two peptidoglycan degrading endolysins, PlySs2 and SAL-1, were produced recombinantly. A sortase recognition tag (SrtTag) was included to allow site-specific conjugation of each enzyme onto silkwt and FN-silk coatings using an engineered variant of the transpeptidase Sortase A (SrtA*). To evaluate bacterial adhesion on the samples, Staphylococcus aureus was incubated on the coatings and subsequently subjected to live/dead staining. Fluorescence microscopy revealed a reduced number of bacteria on all silk coatings containing enzymes. Moreover, the bacteria were mobile to a higher degree, indicating a negative influence on the bacterial adhesion. The capability to support mammalian cell interactions was assessed by cultivation of the osteosarcoma cell line U-2 OS on dual-functional surfaces, prepared by conjugating the enzymes onto FN-silk coatings. U-2 OS cells could adhere to silk coatings with enzymes and showed high spreading and viability, demonstrating good cell compatibility.

Place, publisher, year, edition, pages
2019.
Keywords [en]
Staphylococcus aureus, antibacterial, endolysin, multifunctional coating, osseointegration, recombinant spider silk
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-39355DOI: 10.1021/acsami.9b05531PubMedID: 31241302OAI: oai:DiVA.org:ri-39355DiVA, id: diva2:1335936
Available from: 2019-07-08 Created: 2019-07-08 Last updated: 2019-07-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Bysell, Helena

Search in DiVA

By author/editor
Bysell, Helena
By organisation
Chemistry and Materials
In the same journal
ACS Applied Materials and Interfaces
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7