Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanical properties of cellulose nanofibril films: effects of crystallinity and its modification by treatment with liquid anhydrous ammonia
NTNU, Norway.
KTH Royal Institute of Technology,´Sweden.
RISE - Research Institutes of Sweden, Bioeconomy, PFI.ORCID iD: 0000-0002-6183-2017
RISE - Research Institutes of Sweden, Bioeconomy, PFI. NTNU, Norway.ORCID iD: 0000-0003-2271-3637
Show others and affiliations
2019 (English)In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 11, p. 6615-27Article in journal (Refereed) Published
Abstract [en]

The influence of cellulose crystallinity on mechanical properties of cellulose nano-fibrils (CNF) was investigated. Degree of crystallinity (DoC) was modified using liquid anhydrous ammonia. Such treatment changes crystal allomorph from cellulose I to cellulose III, a change which was reversed by subsequent boiling in water. DoC was measured using solid state nuclear magnetic resonance (NMR). Crystalline index (CI) was also measured using wide angle X-ray scattering (WAXS). Cotton linters were used as the raw material. The cotton linter was ammonia treated prior to fibrillation. Reduced DoC is seen to associate with an increased yield point and decreased Young modulus. Young modulus is here defined as the maximal slope of the stress–strain curves. The association between DoC and Young modulus or DoC and yield point are both statistically significant. We cannot conclude there has been an effect on strainability. While mechanical properties were affected, we found no indication that ammonia treatment affected degree of fibrillation. CNF was also studied in air and liquid using atomic force microscopy (AFM). Swelling of the nanofibers was observed, with a mean diameter increase of 48.9%.

Place, publisher, year, edition, pages
Springer Netherlands , 2019. Vol. 26, no 11, p. 6615-27
Keywords [en]
Cellulose nanofibrils, Degree of crystallinity, Mechanical properties, Swelling, Ammonia, Atomic force microscopy, Cellulose, Cellulose films, Chromium compounds, Cotton, Crystallinity, Liquids, Nanofibers, Nuclear magnetic resonance, X ray scattering, Ammonia treatment, Anhydrous ammonia, Cellulose crystallinity, Cotton linters, Crystalline index, Solid-state nuclear magnetic resonance
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-39277DOI: 10.1007/s10570-019-02546-2Scopus ID: 2-s2.0-85067190175OAI: oai:DiVA.org:ri-39277DiVA, id: diva2:1334667
Available from: 2019-07-03 Created: 2019-07-03 Last updated: 2019-07-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Chinga-Carrasco, GarySyverud, Kristin

Search in DiVA

By author/editor
Chinga-Carrasco, GarySyverud, Kristin
By organisation
PFI
In the same journal
Cellulose (London)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7