Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical study on overall smoke control using naturally ventilated shafts during fires in a road tunnel
RISE - Research Institutes of Sweden, Safety and Transport, Safety. University of Science and Technology of China, China.
RISE - Research Institutes of Sweden, Safety and Transport, Safety.ORCID iD: 0000-0001-7744-2390
RISE - Research Institutes of Sweden, Safety and Transport, Safety.ORCID iD: 0000-0002-9340-6768
University of Science and Technology of China, China.
2019 (English)In: International journal of thermal sciences, ISSN 1290-0729, E-ISSN 1778-4166, Vol. 140, p. 491-504Article in journal (Refereed) Published
Abstract [en]

This paper studies the overall smoke control of natural ventilation systems with vertical shafts during fires in a common road tunnel by numerical modelling. The variables studied include the heat release rate, longitudinal fire location along the tunnel, length of shafts and the interval between two shafts. Simulation results indicate that the total smoke spread length on both sides of fire source is closely independent of the heat release rate and longitudinal fire locations. For a given dimensionless shaft interval (the ratio of the shaft interval to shaft length), with the increase of shaft length, the smoke spread length firstly increases, reaching a maximum at 12 m, and then decreases significantly until 18 m. For a fire less than 30 MW, the first shaft pair on both sides of fire source prevents the critical-temperature smoke (270 °C) from spreading beyond this shaft. For a 100 MW fire, in the cases with shorter shaft lengths (L shaft ≤9 m), the critical-temperature smoke can't be controlled between the first shaft pair. The gas temperature at human height (1.8 m) is less than 60 °C in all cases with shafts. Downdraught occurs when the smoke front stabilizes at the bottom of a shaft and the buoyancy force could be too low to overcome the kinetic pressure of the air flow flowing into this shaft, consequently destroying the structure of smoke layer. In most scenarios, the total exhaust area of shafts that is required to exhaust all the smoke is about 100 m 2 . The first shaft pair plays a critical role to exhaust the smoke, and its exhaust efficiency is also affected significantly by the shaft length. This study investigates how to control the smoke by using vertical shafts in a road tunnel fire and the conclusions are useful to tunnel fire protection engineering.

Place, publisher, year, edition, pages
2019. Vol. 140, p. 491-504
Keywords [en]
CFD simulation, Natural ventilation, Smoke control, Tunnel fire, Vertical shaft, Computational fluid dynamics, Fire protection, Fires, Roads and streets, Smoke abatement, Temperature, Ventilation, CFD simulations, Tunnel fires, Smoke
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-38255DOI: 10.1016/j.ijthermalsci.2019.03.016Scopus ID: 2-s2.0-85063353163OAI: oai:DiVA.org:ri-38255DiVA, id: diva2:1301636
Note

 Funding details: China Scholarship Council; Funding text 1: This project was financially supported by the Tunnel and Underground Safety Center (TUSC) . Besides, the authors would also like to acknowledge China Scholarship Council for providing Yongzheng Yao with the opportunity to study at RISE Research Institutes of Sweden.

Available from: 2019-04-02 Created: 2019-04-02 Last updated: 2019-04-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Li, Ying ZhenIngason, Haukur

Search in DiVA

By author/editor
Li, Ying ZhenIngason, Haukur
By organisation
Safety
In the same journal
International journal of thermal sciences
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7