Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings
Åbo Akademi University, Finland.
Tampere University of Technology, Finland.
RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
Show others and affiliations
2019 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 12, p. 11920-11927Article in journal (Refereed) Published
Abstract [en]

Recent years have seen an increased interest toward utilizing biobased and biodegradable materials for barrier packaging applications. Most of the abovementioned materials usually have certain shortcomings that discourage their adoption as a preferred material of choice. Nanocellulose falls into such a category. It has excellent barrier against grease, mineral oils, and oxygen but poor tolerance against water vapor, which makes it unsuitable to be used at high humidity. In addition, nanocellulose suspensions' high viscosity and yield stress already at low solid content and poor adhesion to substrates create additional challenges for high-speed processing. Polylactic acid (PLA) is another potential candidate that has reasonably high tolerance against water vapor but rather a poor barrier against oxygen. The current work explores the possibility of combining both these materials into thin multilayer coatings onto a paperboard. A custom-built slot-die was used to coat either microfibrillated cellulose or cellulose nanocrystals onto a pigment-coated baseboard in a continuous process. These were subsequently coated with PLA using a pilot-scale extrusion coater. Low-density polyethylene was used as for reference extrusion coating. Cationic starch precoating and corona treatment improved the adhesion at nanocellulose/baseboard and nanocellulose/PLA interfaces, respectively. The water vapor transmission rate for nanocellulose + PLA coatings remained lower than that of the control PLA coating, even at a high relative humidity of 90% (38 °C). The multilayer coating had 98% lower oxygen transmission rate compared to just the PLA-coated baseboard, and the heptane vapor transmission rate reduced by 99% in comparison to the baseboard. The grease barrier for nanocellulose + PLA coatings increased 5-fold compared to nanocellulose alone and 2-fold compared to PLA alone. This approach of processing nanocellulose and PLA into multiple layers utilizing slot-die and extrusion coating in tandem has the potential to produce a barrier packaging paper that is both 100% biobased and biodegradable.

Place, publisher, year, edition, pages
2019. Vol. 11, no 12, p. 11920-11927
Keywords [en]
barrier coatings, multilayer coatings, nanocellulose, polylactic acid, roll-to-roll process, Adhesion, Cellulose, Coatings, Extrusion, High speed cameras, Humidity control, Multilayers, Oxygen, Packaging materials, Polyesters, Suspensions (fluids), Water vapor, Yield stress, High relative humidities, Microfibrillated cellulose, Multi-layer-coating, Oxygen transmission rates, Poly lactic acid, Water vapor transmission rate
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-38266DOI: 10.1021/acsami.9b00922Scopus ID: 2-s2.0-85063139115OAI: oai:DiVA.org:ri-38266DiVA, id: diva2:1301618
Available from: 2019-04-02 Created: 2019-04-02 Last updated: 2019-06-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Swerin, Agne

Search in DiVA

By author/editor
Swerin, Agne
By organisation
Biorefinery and Energy
In the same journal
ACS Applied Materials and Interfaces
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7