Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Emerging Risks from Smoldering Fires: Results from the EMRIS project
RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Western Norway University of Applied Sciences, Norway.ORCID iD: 0000-0003-0979-2369
Western Norway University of Applied Sciences, Norway.
2018 (English)Conference paper, Published paper (Other academic)
Abstract [en]

Smoldering fires represent a severe, but often overlooked danger to society. Smoldering causes major economic losses for industrial facilities with production, transport and storage of biomass and biofuels worldwide. The smoke from post-flaming residual burning on the forest floor and in peatlands represents a major contributor to greenhouse gas emissions. [1]To prevent initiation of smoldering, and facilitate safe, efficient and complete extinguishment, a better fundamental understanding of smoldering is key. This is the aim of the research project EMRIS (Emerging Risks from Smoldering Fires). The consortium consists of 6 research institutes and universities in 5 countries, coordinated by Western Norway University of Applied Sciences in Haugesund, Norway. EMRIS started in 2015 and is now in its final stage. We will here present some points of interest from the project.Materials in the study include wood pellets, other biopellets, cotton, waste (wood chips), coal, wood fiber insulation and various pyrolysis products. Both experimental and modeling work has been done.Experimental work in small-scale has studied the sensitivity of smoldering ignition to a range of parameters [2], the impact of changes in air flow on the combustion [3], the effect of fire retardant content and fiber size [4], the transition from smoldering to flaming fire [5,6], early detection of smoldering [7]and heat extraction from the fuel bed with successfulextinguishment [8,9]. In medium scale experiments, initiationand propagation of reaction fronts have been studied [10]. TheEMRIS team also studies how particulate matter fromsmoldering fires can affect large scale phenomena, such ascloud formations, climate and public health.A cellular automaton model has been found to give a realistic representation of smoldering spread [11]. The method is based on a network of cells that mimic processes taking place in the material, which is easier to program and requires less computing power than traditional tools.The EMRIS project therefore represents progress within many different aspects of fire safety science. A continuation of the project is very much of interest, we welcome interested parties to discuss with us.

Place, publisher, year, edition, pages
2018.
Keywords [en]
biomass, industrial safety, experiments, simulations
National Category
Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:ri:diva-37537OAI: oai:DiVA.org:ri-37537DiVA, id: diva2:1281930
Conference
Nordic Fire & Safety Days, Trondheim, 7-8 June 2018
Available from: 2019-01-23 Created: 2019-01-23 Last updated: 2023-06-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Fjellgaard Mikalsen, Ragni

Search in DiVA

By author/editor
Fjellgaard Mikalsen, Ragni
By organisation
Fire Research Norway
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 199 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf