The conditions for initial tensile cracking around a rounded blunt and a sharp notch and subsequent propagation were investigated by means of wedge splitting tests on structurally isotropic granite. In addition, the crack initiation and propagation on anisotropic gneiss specimens with a blunt notch were investigated in two different material directions. The wedge splitting test specimens which has a straight notch is normally used to determine mode I fracture properties for concrete but not for rock materials. The use of a straight notch in the specimens instead of a chevron type of notch, which is commonly used for fracture mechanics tests, was found to be well suited for the actual type of investigation.
The development of fractures from the notch into the specimens was monitored by measuring the deformation field on the specimen surface by digital image correlation (DIC) and by the crack mouth opening displacement. The fracture patterns were different in the granite and the gneiss. The DIC illustratively showed how cracks branched along the main crack path in the granite whereas no branching occurred in the gneiss material. This could also be verified by studying thin sections taken along the fracture path. It was seen that the granite behaved more ductile than the gneiss.
A finite element model of the wedge splitting test was made where the crack propagation was modelled using a cohesive-zone model and calibrated using the results from the experiments. The fracture energies were computed and it was found that the energies were about 50-100 percent higher in the granite than in the gneiss. The tensile stress cracking initiation in granite for the blunt and the sharp notch was slightly different. The gneiss specimens were all with a blunt notch and a comparison of the two notch types could not be made in this case.