Model scale tests with varying materials as tunnel structure were carried out to further study the theoretical model of maximum gas temperature for structural protection. New correlation for calculation of air mass flow rate is introduced. Test results showed that the maximum ceiling gas temperatures increases with the increasing heat release rate and decreases with the increasing tunnel width and thermal inertia of the tunnel linings. Higher ventilation velocity may also result in slightly higher temperatures for large fires.
Comparisons of model scale tests and theoretical models showed that the theoretical models predict the maximum ceiling gas temperature very well. A fire with a fixed heat release rate or a time-varying heat release rate, the effects of tunnel structure, tunnel ventilation, tunnel width and fire size have been well considered by the model. Comparisons of other model and full scale tests with theoretical models further verified this.
Finansierat av RISE Tunnel Underground Safety Center (TUSC).