Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils.
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.ORCID iD: 0000-0003-0838-3977
Show others and affiliations
2019 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 2, p. 728-737Article in journal (Refereed) Published
Abstract [en]

Chemically cross-linked highly porous nanocellulose aerogels with complex shapes have been prepared using a freeze-linking procedure that avoids common post activation of cross-linking reactions and freeze-drying. The aerogel shapes ranged from simple geometrical three-dimensional bodies to swirls and solenoids. This was achieved by molding or extruding a periodate oxidized cellulose nanofibril (CNF) dispersion prior to chemical cross-linking in a regular freezer or by reshaping an already prepared aerogel by plasticizing the structure in water followed by reshaping and locking the aerogel into its new shape. The new shapes were most likely retained by new cross-links formed between CNFs brought into contact by the deformation during reshaping. This self-healing ability to form new bonds after plasticization and redrying also contributed to the mechanical resilience of the aerogels, allowing them to be cyclically deformed in the dry state, reswollen with water, and redried with good retention of mechanical integrity. Furthermore, by exploiting the shapeability and available inner structure of the aerogels, a solenoid-shaped aerogel with all surfaces coated with a thin film of conducting polypyrrole was able to produce a magnetic field inside the solenoid, demonstrating electromagnetic properties. Furthermore, by biomimicking the porous interior and stiff exterior of the beak of a toucan bird, a functionalized aerogel was created by applying a 300 μm thick stiff wax coating on its molded external surfaces. This composite material displayed a 10-times higher elastic modulus compared to that of the plain aerogel without drastically increasing the density. These examples show that it is possible to combine advanced shaping with functionalization of both the inner structure and the surface of the aerogels, radically extending the possible use of CNF aerogels.

Place, publisher, year, edition, pages
2019. Vol. 20, no 2, p. 728-737
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-36386DOI: 10.1021/acs.biomac.8b01412PubMedID: 30394086Scopus ID: 2-s2.0-85057560598OAI: oai:DiVA.org:ri-36386DiVA, id: diva2:1265232
Available from: 2018-11-22 Created: 2018-11-22 Last updated: 2023-05-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Granberg, Hjalmar

Search in DiVA

By author/editor
Granberg, Hjalmar
By organisation
Papermaking and Packaging
In the same journal
Biomacromolecules
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 128 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf