Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of state of charge on elastic properties of 3D structural battery composites
Chalmers University of Technology, Sweden.
RISE - Research Institutes of Sweden, Materials and Production, SICOMP. Luleå University of Technology, Sweden.ORCID iD: 0000-0003-3755-6419
Chalmers University of Technology, Sweden.
2019 (English)In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 169, p. 26-33Article in journal (Refereed) Published
Abstract [en]

The effects of state of charge (SOC) on the elastic properties of 3D structural battery composites are studied. An analytical model based on micromechanical models is developed to estimate the effective elastic properties of 3D structural battery composite laminae at different SOC. A parametric study is performed to evaluate how different design parameters such as volume fraction of active materials, stiffness of constituents, type of positive electrode material, etc. affect the moduli of the composite lamina for extremes in SOC. Critical parameters and configurations resulting in large variations in elastic properties due to change in SOC are identified. As the extreme cases are of primary interest in structural design, the effective elastic properties are only estimated for the electrochemical states corresponding to discharged (SOC = 0) and fully charged (SOC = 1) battery. The change in SOC is simulated by varying the volume and elastic properties of the constituents based on data from literature. Parametric finite element (FE) models for square and hexagonal fibre packing arrangements are also analysed in the commercial FE software COMSOL and used to validate the analytical model. The present study shows that the transverse elastic properties E2 and G23 and the in-plane shear modulus G12 are strongly affected by the SOC while the longitudinal stiffness E1 is not. Fibre volume fraction and the properties of the coating (such as stiffness and Poisson's ratio) are identified as critical parameters that have significant impact on the effect of SOC on the effective elastic properties of the composite lamina. For configurations with fibre volume fraction Vf ≥ 0.4 and Young's modulus of the coating of 1 GPa or higher, the transverse properties E2 and G23 change more than 30% between extremes in SOC. Furthermore, for configurations with high volume fractions of electrode materials and coating properties approaching those of rubber the predicted change in transverse stiffness E2 is as high as +43%. This shows that it is crucial to take effects of SOC on the elastic properties into account when designing 3D structural battery composite components. © 2018 Elsevier Ltd

Place, publisher, year, edition, pages
2019. Vol. 169, p. 26-33
Keywords [en]
Carbon fibres, Functional composites, Electrical properties, Elastic properties, C. Modelling, Analytical models, Battery management systems, Charging (batteries), Coatings, Composite structures, Elastic moduli, Elasticity, Electrodes, Fibers, Stiffness, Structural design, Structural properties, Volume fraction, Effective elastic property, Elastic properties, Fibre volume fraction, Functional composites, In-plane shear modulus, Longitudinal stiffness, Parametric finite elements, Positive electrode materials, Secondary batteries
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-36398DOI: 10.1016/j.compscitech.2018.10.033Scopus ID: 2-s2.0-85056185119OAI: oai:DiVA.org:ri-36398DiVA, id: diva2:1265187
Note

 Funding details: Horizon 2020, 738085; Funding details: European Geosciences Union, EGU; Funding details: U.S. Air Force, USAF, FA9550-17-1-0338;

Available from: 2018-11-22 Created: 2018-11-22 Last updated: 2019-06-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Marklund, Erik

Search in DiVA

By author/editor
Marklund, Erik
By organisation
SICOMP
In the same journal
Composites Science And Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 295 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7