For the assessment of experimental measurements of focused wave groups impacting a surface-piecing fixed structure, we present a new Fully Nonlinear Potential Flow (FNPF) model for simulation of unsteady water waves. The FNPF model is discretized in three spatial dimensions (3D) using high-order prismatic - possibly curvilinear - elements using a spectral element method (SEM) that has support for adaptive unstructured meshes. This SEM-FNPF model is based on an Eulerian formulation and deviates from past works in that a direct discretization of the Laplace problem is used making it straightforward to handle accurately floating structural bodies of arbitrary shape. Our objectives are; i) present detail of a new SEM modelling developments and ii) to consider its application to address a wave-body interaction problem for nonlinear design waves and their interaction with a model-scale fixed Floating Production, Storage and Offloading vessel (FPSO). We first reproduce experimental measurements for focused design waves that represent a probably extreme wave event for a sea state represented by a wave spectrum and seek to reproduce these measurements in a numerical wave tank. The validated input signal based on measurements is then generated in a NWT setup that includes the FPSO and differences in the signal caused by nonlinear diffraction is reported.