Resource efficiency or economy of scale: Biorefinery supply chain configurations for co-gasification of black liquor and pyrolysis liquidsShow others and affiliations
2018 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 230, p. 912-924Article in journal (Refereed) Published
Abstract [en]
Biorefineries for the production of fuels, chemicals, or materials can be an important contributor to reducing dependence on fossil fuels. The economic performance of the biorefinery supply chain can be increased by, for example, industrial integration to utilise excess heat and products, increasing size to improve economy of scale, and using intermediate upgrading to reduce feedstock transport cost. To enable a large-scale introduction of biorefineries it is important to identify cost efficient supply chain configurations. This work investigates a lignocellulosic biorefinery concept integrated with forest industry, focusing on how different economic conditions affect the preferred supply chain configurations. The technology investigated is black liquor gasification, with and without the addition of pyrolysis liquids to increase production capacity. Primarily, it analyses trade-offs between high biomass conversion efficiency and economy of scale effects, as well as the selection of centralised vs. decentralised supply chain configurations. The results show the economic advantage for biomass efficient configurations, when the biorefinery investment is benefited from an alternative investment credit due to the replacement of current capital-intensive equipment at the host industry. However, the investment credit received heavily influenced the cost of the biorefinery and clearly illustrates the benefit for industrial integration to reduce the cost of biorefineries. There is a benefit for a decentralised supply chain configuration under very high biomass competition. However, for lower biomass competition, site-specific conditions will impact the favourability of either centralised or decentralised supply chain configurations.
Place, publisher, year, edition, pages
2018. Vol. 230, p. 912-924
Keywords [en]
Biorefinery, Black liquor, Economy of scale, Efficiency, Pyrolysis liquids, Supply chain, Bioconversion, Biomass, Cost reduction, Fossil fuels, Gasification, Investments, Liquids, Pyrolysis, Refining, Supply chains, Biorefineries, Black liquor gasification, Efficiency and economies, Industrial integration, Supply chain configuration, Economic and social effects, cost analysis, economic conditions, efficiency measurement, fossil fuel, integrated approach, replacement, resource use, supply chain management, Cost Control
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-35582DOI: 10.1016/j.apenergy.2018.09.018Scopus ID: 2-s2.0-85053046147OAI: oai:DiVA.org:ri-35582DiVA, id: diva2:1261225
Note
Funding details: Energimyndigheten; Funding details: 213-2014-184, Svenska Forskningsrådet Formas; Funding text: The work has been carried out under the auspices of Forskarskola Energisystem financed by the Swedish Energy Agency . Economic support from the Swedish Research Council FORMAS is also gratefully acknowledged (dnr. 213-2014-184), as well as from Bio4Energy, a strategic research environment appointed by the Swedish government.
2018-11-062018-11-062023-05-23Bibliographically approved