The paper discusses the use of CFD simulations to analyse the parametric excitation of moored, full scale wave energy converters in six degrees of freedom. We present results of VOF- RANS and VOF-Euler simulations in Open FOAM® for two body shapes: (i) a truncated cylinder; and (ii) a cylinder with a smooth hemispherical bottom. Flow characteristics show large differences in smoothness of flow between the hull shapes, where the smoother shape results in a larger heave response. However the increased amplitude makes it unstable and parametric pitch excitation occurs with amplitudes up to 30°. The responses in surge, heave and pitch (including the transition to parametric motion) are found to be insensitive to the viscous effects. This is notable as the converters are working in resonance. The effect of viscous damping was visible in the roll motion, where the RANS simulations showed a smaller roll. However, the roll motion was found to be triggered not by wave-body interaction with the incident wave, but by reflections from the side walls. This highlights the importance of controlling the reflections in numerical wave tanks for simulations with WEC motion in six degrees of freedom.