Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
UV irradiation of biomarkers adsorbed on minerals under Martian-like conditions: Hints for life detection on Mars
Geophysical Laboratory of the Carnegie Institution for Science, USA; NAF-Astrophysical Observatory of Arcetri, Italy.
Utrecht University, The Netherlands.
NAF-Astrophysical Observatory of Arcetri, Italy.
Utrecht University, The Netherlands.
Show others and affiliations
2018 (English)In: Icarus (New York, N.Y. 1962), ISSN 0019-1035, E-ISSN 1090-2643, Vol. 313, p. 38-60Article in journal (Refereed) Published
Abstract [en]

Laboratory simulations of Martian conditions are essential to develop quantitative models for the survival of organic biomarkers for future Mars exploration missions. In this work, we report the results of ultraviolet (UV) irradiation processing of biomarkers adsorbed on minerals under Martian-like conditions. Specifically, we prepared Mars soil analogues by doping forsterite, lizardite, antigorite, labradorite, natrolite, apatite and hematite minerals with organic compounds considered as potential biomarkers of extant terrestrial life such as the nucleotides adenosine monophosphate (AMP) and uridine monophosphate (UMP). We characterized such Mars soil analogues by means of Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Confocal Raman Imaging Spectroscopy (CRIS), in order to get insights into the specific molecule-mineral interactions and explore the capabilities of different techniques to reveal diagnostic features of these biomarkers. Then, we performed irradiation experiments in the mid-UV spectral region under simulated Martian conditions and under terrestrial ambient conditions for comparison, monitoring the degradation process through DRIFTS. We observed that degradation under Martian-like conditions occurs much slower than in terrestrial ambient conditions. The minerals labradorite and natrolite mainly promote photodegradation of nucleotides, hematite and forsterite exhibit an intermediate degrading effect, while apatite, lizardite and antigorite do not show any significant catalytic effect on the degradation of the target organic species.

Place, publisher, year, edition, pages
2018. Vol. 313, p. 38-60
Keywords [en]
Biomarkers, Infrared spectroscopy, Laboratory simulations, Mars soil analogues, Raman spectroscopy, ToF-SIMS
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-34364DOI: 10.1016/j.icarus.2018.05.001Scopus ID: 2-s2.0-85047245545OAI: oai:DiVA.org:ri-34364DiVA, id: diva2:1237165
Note

 Funding details: TD1308-Origins; Funding details: NNX13AJ19G, NASA, National Aeronautics and Space Administration; Funding details: 198/15, SNSB, Swedish National Space Board; Funding details: ASI, Agenzia Spaziale Italiana; Funding details: UU, Universiteit Utrecht;

Available from: 2018-08-07 Created: 2018-08-07 Last updated: 2019-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Siljeström, Sandra

Search in DiVA

By author/editor
Siljeström, Sandra
By organisation
Chemistry and Materials
In the same journal
Icarus (New York, N.Y. 1962)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7