Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-Performance Thiol–Ene Composites Unveil a New Era of Adhesives Suited for Bone Repair
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
Karolinska Institutet, Sweden.
RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
Show others and affiliations
2018 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 26, article id 1800372Article in journal (Refereed) Published
Abstract [en]

The use of adhesives for fracture fixation can revolutionize the surgical procedures toward more personalized bone repairs. However, there are still no commercially available adhesive solutions mainly due to the lack of biocompatibility, poor adhesive strength, or inadequate fixation protocols. Here, a surgically realizable adhesive system capitalizing on visible light thiol–ene coupling chemistry is presented. The adhesives are carefully designed and formulated from a novel class of chemical constituents influenced by dental resin composites and self-etch primers. Validation of the adhesive strength is conducted on wet bone substrates and accomplished via fiber-reinforced adhesive patch (FRAP) methodology. The results unravel, for the first time, on the promise of a thiol–ene adhesive with an unprecedented shear bond strength of 9.0 MPa and that surpasses, by 55%, the commercially available acrylate dental adhesive system Clearfil SE Bond of 5.8 MPa. Preclinical validation of FRAPs on rat femur fracture models details good adhesion to the bone throughout the healing process, and are found biocompatible not giving rise to any inflammatory response. Remarkably, the FRAPs are found to withstand loads up to 70 N for 1000 cycles on porcine metacarpal fractures outperforming clinically used K-wires and match metal plates and screw implants.

Place, publisher, year, edition, pages
2018. Vol. 28, no 26, article id 1800372
Keywords [en]
adhesives, biomedical applications, composites, photochemistry, polymeric materials, Biocompatibility, Composite materials, Dental composites, Dental materials, Fracture, Fracture fixation, Functional polymers, Medical applications, Photochemical reactions, Polymeric implants, Polymers, Chemical constituents, Coupling chemistry, Dental adhesive system, Dental resin composites, Inflammatory response, Shear bond strengths, Surgical procedures, Bone
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-33958DOI: 10.1002/adfm.201800372Scopus ID: 2-s2.0-85048981911OAI: oai:DiVA.org:ri-33958DiVA, id: diva2:1230417
Note

Funding details: KI, Karolinska Institutet; Funding details: MSCA-IF-2014-655649, MSCA, H2020 Marie Skłodowska-Curie Actions; Funding details: 2010-435; Funding details: 2014-03777; Funding details: 2012-0196, Knut och Alice Wallenbergs Stiftelse; 

Available from: 2018-07-03 Created: 2018-07-03 Last updated: 2018-08-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Stenlund, PatrikPetronis, SarunasHåkansson, Joakim

Search in DiVA

By author/editor
Stenlund, PatrikPetronis, SarunasHåkansson, Joakim
By organisation
Chemistry and Materials
In the same journal
Advanced Functional Materials
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.4