Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency.
KTH Royal Institute of Technology, Sweden.
RISE - Research Institutes of Sweden, Bioeconomy, Biobased Materials.
KTH Royal Institute of Technology, Sweden.
2018 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, no 7, p. 3020-3029Article in journal (Refereed) Published
Abstract [en]

To expand the use of renewable materials, paper products with superior mechanical and optical properties are needed. Although beating, bleaching, and additives are known to improve industrially produced Kraft pulp papers, properties are limited by the quality of the fibers. While the use of nanocellulose has been shown to significantly increase paper properties, the current cost associated with their production has limited their industrial relevance. Here, using a simple mild peracetic acid (PAA) delignification process on spruce, we produce hemicellulose-rich holocellulose fibers (28.8 wt %) with high intrinsic strength (1200 MPa for fibers with microfibrillar angle smaller than 10°). We show that PAA treatment causes less cellulose/hemicellulose degradation and better preserves cellulose nanostructure in comparison to conventional Kraft pulping. High-density holocellulose papers with superior mechanical properties (Young's modulus of 18 GPa and ultimate strength of 195 MPa) are manufactured using a water-based hot-pressing process, without the use of beating or additives. We propose that the preserved hemicelluloses act as "glue" in the interfiber region, improving both mechanical and optical properties of papers. Holocellulose fibers may be affordable and applicable candidates for making special paper/composites where high mechanical performance and/or optical transmittance are of interest.

Place, publisher, year, edition, pages
2018. Vol. 19, no 7, p. 3020-3029
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-33919DOI: 10.1021/acs.biomac.8b00585PubMedID: 29757614Scopus ID: 2-s2.0-85047085277OAI: oai:DiVA.org:ri-33919DiVA, id: diva2:1212441
Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2018-12-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus
By organisation
Biobased Materials
In the same journal
Biomacromolecules
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf