Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards improved practices in Life Cycle Assessment of seafood and other aquatic products
UPR Recyclage et Risque, France ; University of Montpellier, France.
Stockholm University, Sweden ; WorldFish, Malaysia.
Pontificia Universidad Católica del Perú, Peru.
RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.ORCID iD: 0000-0003-1995-2338
2018 (English)In: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502, Vol. 23, no 5, p. 979-981Article in journal (Refereed) Published
Abstract [en]

Introduction: 

Aquatic supply chains, based on e.g. fish, molluscs, crustaceans and algae, provide products aimed for direct or indirect human consumption and other uses. Global demand for these products is increasing, but the fact that wild-capture fisheries—supplying inputs for the food and feed industries—have stagnated (FAO 2016), or even declined, has raised questions about the environmental consequences of aquatic supply chains  Research applying LCA to seafood products has emerged since the early years of the century and, until today, dozens of case studies of fisheries and aquaculture systems from all around the world have been published. The body of literature in this field has grown to the extent of allowing systematic reviews to be undertaken on specific production sectors, such as for capture fisheries 

The lifecycle of seafood commodities differs from that of terrestrial production systems in their diversity, in the case of fisheries, the reliance on extraction of a natural resource (fish stocks), their impacts on often unmapped ecosystems (e.g. seafloors and deep sea fish stocks) and the more complex trophic webs of aquatic ecosystems. To capture also these biotic and fisheries-specific impacts, an increasing number of fisheries and aquaculture LCAs apply novel impact categories such as biotic resource use and benthic ecosystems impacts. Aquaculture systems, in addition, often rely on feed resources from capture fisheries, agriculture and livestock, requiring extensive LCI models.

Among the existing aquaculture seafood LCA studies, there is a strong focus on salmonids aquaculture in Europe and North America. The globally largest aquaculture sector, carp farming in China, has, however, been poorly covered. Peruvian anchoveta, the world’s largest fishery and the primary source of fishmeal and fish oil, was first modelled in 2014. Consequently, while the number of aquatic LCAs has steadily been increasing, the uniqueness of aquatic production chains and the diversity of species leave many inventories overlooked and some relevant impact categories unaddressed. In response, we initiated this Special Issue (SI), to supplement literature and highlight shortcomings. Thirteen articles were ultimately accepted in the SI

Place, publisher, year, edition, pages
Springer Verlag , 2018. Vol. 23, no 5, p. 979-981
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-33901DOI: 10.1007/s11367-018-1454-8Scopus ID: 2-s2.0-85044185087OAI: oai:DiVA.org:ri-33901DiVA, id: diva2:1210957
Available from: 2018-05-30 Created: 2018-05-30 Last updated: 2023-05-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ziegler, Friederike

Search in DiVA

By author/editor
Ziegler, Friederike
By organisation
Agrifood and Bioscience
In the same journal
The International Journal of Life Cycle Assessment
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 86 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf