One-step superhydrophobic coating using hydrophobized cellulose nanofibrilsShow others and affiliations
2018 (English)In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 544, p. 152-158Article in journal (Refereed) Published
Abstract [en]
Superhydrophobic surfaces have high potential in self-cleaning and anti-fouling applications. We developed a one-step superhydrophobic coating formulation containing sodium oleate (NaOl), hydrophobized precipitated calcium carbonate and biobased cellulose nanofibrils (CNFs) hydrophobized with either alkyl ketene dimer (AKD) or amino propyl trimethoxy silane (APMS) as a binder to fix and distribute the particles. Coatings were made on paperboard and the wetting behavior of the surface was assessed. Static, advancing and receding contact angles with water as well as roll-off and water shedding angle were compared to coatings made with styrene butadiene latex as binder instead of CNFs. Modifications with alkyl ketene dimer showed most promising results for a viable process in achieving superhydrophobic paperboard but required reformulation of the coating with optimized and reduced amount of NaOl to avoid surfactant-induced wetting via excess NaOl. A static water contact angle of 150° was reached for the CNF-AKD. The use of CNFs enables the improvement of coating quality avoiding cracking with the use of nanocellulose as a renewable binder.
Place, publisher, year, edition, pages
2018. Vol. 544, p. 152-158
Keywords [en]
Cellulose nanofibrils, Paperboard, Superhydrophobicity, Binders, Bins, Calcium carbonate, Cellulose, Coatings, Contact angle, Nanofibers, Paperboards, Sodium Carbonate, Styrene, Wetting, Advancing and receding contact angles, Cellulose nanofibrils (CNFs), Precipitated calcium carbonate, Styrene butadiene latices, Super-hydrophobic surfaces, Superhydrophobic coatings, Hydrophobicity, 1, 3 butadiene, dimer, ketene derivative, latex, nanofiber, oleate sodium, silane derivative, surfactant, water, Article, chemical modification, material coating, priority journal, scanning electron microscopy, water absorption, Cellulose Fibers, Coating, Crazing, Dimers, Sodium Compounds
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-33423DOI: 10.1016/j.colsurfa.2017.12.059Scopus ID: 2-s2.0-85042307822OAI: oai:DiVA.org:ri-33423DiVA, id: diva2:1189103
Note
Funding details: ANR-16-CARN-0025-01, Association Instituts Carnot; Funding details: ANR-11-LABX-0030, Labex; Funding details: COST, European Cooperation in Science and Technology; Funding details: AIR, American Institutes for Research; Funding details: Stiftelsen Nils och Dorthi Troëdssons Forskningsfond;
2018-03-092018-03-092024-03-25Bibliographically approved