Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of value chain configurations for fast pyrolysis of lignocellulosic biomass - Integration, feedstock, and product choice
Luleå University of Technology, Sweden.
Luleå University of Technology, Sweden ; International Institute for Applied Systems Analysis (IIASA), Austria.
RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
Luleå University of Technology, Sweden ; International Institute for Applied Systems Analysis (IIASA), Austria.
2018 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 144, p. 564-575Article in journal (Refereed) Published
Abstract [en]

Fast pyrolysis of lignocellulosic biomass constitutes a promising technology to reduce dependence on fossil fuels. The product, pyrolysis liquids, can either substitute heavy fuel oil directly, or be upgraded via e.g. hydroprocessing to diesel and petrol. This study presents a systematic evaluation of production costs and CO2 mitigation potentials of different fast pyrolysis value chain configurations. The evaluation considers types of localisations, emissions from electricity and hydrogen production, biomass feedstocks, and final products. The resulting production costs were found to be in the range of 36–60 EUR/MWh for crude pyrolysis liquids, and 61–90 EUR/MWh upgraded to diesel and petrol. Industrial integration was found to be favoured. The CO2 mitigation potential for the pyrolysis liquids was in the range of 187–282 t-CO2/GWh biomass. High variations were found when upgraded to diesel and petrol –best-case scenario resulted in a mitigation of 347 t-CO2/GWh biomass, while worst-case scenarios resulted in net CO2 emissions. Favourable policy support, continued technology development, and/or increased fossil fuel prices are required for the technology to be adapted on an industrial scale. It was concluded that integration with existing industrial infrastructure can contribute to cost reductions and thus help enable the transformation of traditional forest industry into biorefineries.

Place, publisher, year, edition, pages
2018. Vol. 144, p. 564-575
Keywords [en]
Biofuel, Fast pyrolysis, Hydroprocessing, Process integration, Pyrolysis liquid, Value chain, Biofuels, Biomass, Carbon dioxide, Chains, Cost reduction, Costs, Feedstocks, Fossil fuels, Fuels, Gasoline, Hydrogen production, Liquids, Pyrolysis liquids, Value chains, Pyrolysis, cellulose, diesel, fossil fuel, integrated approach, lignin, petroleum, processing, production cost, valuation
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-33243DOI: 10.1016/j.energy.2017.12.027Scopus ID: 2-s2.0-85038946657OAI: oai:DiVA.org:ri-33243DiVA, id: diva2:1185684
Note

Funding details: Energimyndigheten; Funding details: dnr. 213-2014-184, Svenska Forskningsrådet Formas

Available from: 2018-02-26 Created: 2018-02-26 Last updated: 2018-03-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus
By organisation
Energy and Circular Economy
In the same journal
Energy
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.4