Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fate of inorganic elements during fast pyrolysis of biomass in a cyclone reactor
RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
2017 (English)In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 203, p. 537-547Article in journal (Refereed) Published
Abstract [en]

In order to reduce ash related operational problem and particle emissions during pyrolysis oil combustion it is important to produce pyrolysis oil with very low concentration of inorganics. In this paper, the distribution of all major inorganic elements (S, Si, Al, Ca, Fe, K, Mg, Mn, Na, P, Ti and Zn) in the pyrolysis products (solid residue and two fractions of pyrolysis oil) was investigated during pyrolysis of stem wood, bark, forest residue, salix and reed canary grass. The raw materials were pyrolysed in a cyclone reactor and the produced pyrolysis oils were recovered as two oil fractions, a condensed fraction and an aerosol fraction. The inorganic composition of the ingoing raw material, the solid residue and the two pyrolysis oil fractions were analysed with inductively coupled plasma spectrometry techniques. All major inorganic elements, except sulphur, were concentrated in the solid residue. A significant amount of sulphur was released to the gas phase during pyrolysis. For zinc, potassium and iron about 1–10 wt% of the ingoing amount, depending on the raw material, was found in the pyrolysis oil. For the rest of the inorganics, generally less than 1 wt% of the ingoing amount was found in the pyrolysis oil. There were also differences in distribution of inorganics between the condensed and the aerosol oil fractions. The easily volatilized inorganic elements such as sulphur and potassium were found to a larger extent in the aerosol fraction, whereas the refractory elements were found to a larger extent in the condensed fraction. This implies that oil fractionation can be a method to produce oil fractions with different inorganic concentrations which thereafter can be used in different technical applications depending on their demand on the inorganic composition of the pyrolysis oil.

Place, publisher, year, edition, pages
2017. Vol. 203, p. 537-547
Keyword [en]
Ash, Biomass, Inorganic elements, Pyrolysis oil
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-30806DOI: 10.1016/j.fuel.2017.04.129Scopus ID: 2-s2.0-85018376034OAI: oai:DiVA.org:ri-30806DiVA: diva2:1138726
Available from: 2017-09-06 Created: 2017-09-06 Last updated: 2017-09-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus
By organisation
ETC Energy Technology Center
In the same journal
Fuel
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.30.1