Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plantsShow others and affiliations
2018 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 227, p. 742-750Article in journal (Refereed) Published
Abstract [en]
The process of biogas upgrading with ionic liquids, i.e. pure 1-butyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide ([bmim][Tf2N]), aqueous choline chloride/urea (ChCl/Urea), and aqueous 1-allyl-3-methyl imidazole formate ([Amim][HCOO]), was simulated in Aspen Plus and compared with the conventional water scrubbing upgrading technique. The comparisons of the performances on the amount of recirculated solvents and energy usage show the following order: aqueous [Amim][HCOO]<aqueous ChCl/Urea<[bmim][Tf2N]<water. Six different co-digestion plants (anaerobic digestion, AD, plants) were surveyed to acquire data for comparison. The selected plants had different raw biogas production capacities and produced gas with differing methane content. The data confirmed the simulation results that the type of substrate and the configuration of AD process are two factors affecting energy usage, investment cost, as well as operation and maintenance costs for the subsequent biogas upgrading. In addition, the simulation indicated that the energy usage of the ionic liquid-based upgrading was lower than that of the conventional upgrading techniques in Scandinavian AD plants. The estimated cost including investment, operation and maintenance for the ionic liquid technology showed to be lower than that for the water scrubbing upgrading process.
Place, publisher, year, edition, pages
2018. Vol. 227, p. 742-750
Keywords [en]
Anaerobic digestion, Biogas upgrading, Ionic liquids, Process simulation, Techno-economic evaluation, Biogas, Computer software, Costs, Economic analysis, Energy utilization, Gas plants, Investments, Liquids, Choline chloride, Estimated costs, Investment costs, Ionic liquid technology, Operation and maintenance, Process simulations
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-31131DOI: 10.1016/j.apenergy.2017.07.067Scopus ID: 2-s2.0-85026290782OAI: oai:DiVA.org:ri-31131DiVA, id: diva2:1136480
2017-08-282017-08-282019-07-01Bibliographically approved