Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Photoconductive zinc oxide-composite paper by pilot paper machine manufacturing
Linköping university.
Linköping university.
RISE, Innventia.ORCID iD: 0000-0003-0838-3977
RISE, Swedish ICT, Acreo.
Show others and affiliations
2016 (English)In: Flexible and printed electronics, ISSN 2058-8585, Vol. 1, 044003Article in journal (Refereed) Published
Abstract [en]

Smartmaterials can be used for awide variety of applications, including sensing and energy harvesting.Implementation of smartmaterials in large area devices requires scalablemanufacturing. The use ofpaper-making techniques would offer an enormous production capacity, allowing for low-cost andlarge-scalemanufacturing. In thisworkwe present a successful pilot scale papermachinemanufacturingof functional composite papers(100mmin−1 with aweb width of 30 cm) based on cellulose fibres andcommercial tetrapodal zinc oxidemicrowhiskers(ZnO-Ts).Carbon electrodes could successfully beprinted on the paper to form complete electronic devices where the paper itself is the active material.Thisenabled development of aZnO-composite paper photosensor,where we characterized its stability,sensitivity and speed. The devices show excellent photosensing properties over awide range of lightirradiances(0.01–1Sun), including short response times (∼10 s) and long-term stability. Under simulatedsunlight and a bias voltage of 1 V, small(0.5 cm2) two-probe interdigitated photosensor devices provided12μAphotocurrent.Under the same conditions, four-probe measurements of the composite papershowed a sheet resistance of 6.9·107Ω/sq. Four-probe measurements also demonstrated that the paperconductivity varies linearlywith light irradiance. To the best of ourknowledge, this is thefirst example ofpilot paper machine production of an optoelectronic paper, demonstrating the potential for large-scalepapermanufacturing of active smart paper from low-cost industrial bulk materials.

Place, publisher, year, edition, pages
2016. Vol. 1, 044003
Keyword [en]
smart material, paper making, photosensor, zinc oxide, scalability, optoelectronics
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:ri:diva-30341DOI: 10.1088/2058-8585/1/4/044003OAI: oai:DiVA.org:ri-30341DiVA: diva2:1134289
Available from: 2017-08-18 Created: 2017-08-18 Last updated: 2017-08-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Granberg, Hjalmar
By organisation
InnventiaAcreo
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0