To establish the process window for the spray quenching step of the induction hardening process is essential for quality control and optimized use of the quenching capacity supplied by the quenching unit. In general, the process window is established by an empirical approach, where the processing is related to the mechanical properties. On the other hand, there has been a rapid development of computational tools that may facilitate and accelerate process optimization. In the present work it is demonstrated how such tools, e.g., FE-simulation and multivariate analysis, can be applied to couple quenching characteristics to mechanical properties. The methodology is applied to induction hardened steel cylinders that were quenched with different flow rates, temperatures and composition of the quenchant. The results show how mechanical properties can be related to characteristics of the quenching, e.g., heat transfer coefficients and characteristics of the cooling curve. Moreover, the work discusses and exemplifies how the process window can be established and how computational tools allow the user to virtually alter the processing and estimate the impact it may have on the mechanical properties.