Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solid nanofoams based on cellulose nanofibers and indomethacin—the effect of processing parameters and drug content on material structure
KTH Royal Institute of Technology, Stockholm, Sweden.
RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces.
KTH Royal Institute of Technology, Stockholm, Sweden.
University of Copenhagen, Copenhagen, Denmark.
Show others and affiliations
2017 (English)In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 526, no 1-2, 291-299 p.Article in journal (Refereed) Published
Abstract [en]

The unique colloidal properties of cellulose nanofibers (CNF), makes CNF a very interesting new excipient in pharmaceutical formulations, as CNF in combination with some poorly-soluble drugs can create nanofoams with closed cells. Previous nanofoams, created with the model drug indomethacin, demonstrated a prolonged release compared to films, owing to the tortuous diffusion path that the drug needs to take around the intact air-bubbles. However, the nanofoam was only obtained at a relatively low drug content of 21 wt% using fixed processing parameters. Herein, the effect of indomethacin content and processing parameters on the foaming properties was analysed. Results demonstrate that a certain amount of dissolved drug is needed to stabilize air-bubbles. At the same time, larger fractions of dissolved drug promote coarsening/collapse of the wet foam. The pendant drop/bubble profile tensiometry was used to verify the wet-foam stability at different pHs. The pH influenced the amount of solubilized drug and the processing-window was very narrow at high drug loadings. The results were compared to real foaming-experiments and solid state analysis of the final cellular solids. The parameters were assembled into a processing chart, highlighting the importance of the right combination of processing parameters (pH and time-point of pH adjustment) in order to successfully prepare cellular solid materials with up to 46 wt% drug loading.

Place, publisher, year, edition, pages
Elsevier B.V. , 2017. Vol. 526, no 1-2, 291-299 p.
Keyword [en]
Cellulose nanofibers; Cellular solid material; Nanofoam; Indomethacin; Poorly-soluble drugs
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:ri:diva-30030DOI: 10.1016/j.ijpharm.2017.04.041Scopus ID: 2-s2.0-85019091475OAI: oai:DiVA.org:ri-30030DiVA: diva2:1119649
Available from: 2017-07-04 Created: 2017-07-04 Last updated: 2017-07-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus
By organisation
Chemistry, Materials and Surfaces
In the same journal
International Journal of Pharmaceutics
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.29.1