Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transparent chitosan films reinforced with a high content of nanofibrillated cellulose
Show others and affiliations
2010 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 81, no 2, 394-401 p.Article in journal (Refereed) Published
Abstract [en]

This paper reports the preparation and characterization of nanocomposite films based on different chitosan matrices and nanofibrillated cellulose (NFC) for the purpose of improving strength properties. The nanocomposite films were prepared by a simple procedure of casting a water-based suspension of chitosan and NFC, and were characterized by several techniques: namely SEM, X-ray diffraction, visible spectrophotometry, TGA, tensile and dynamic-mechanical analysis. The films obtained were shown to be highly transparent (transmittance varying between 90 and 20% depending on the type of chitosan and NFC content), flexible, displayed better mechanical properties, with a maximum increment on the Young’s modulus of 78% and 150% for high molecular weight (HCH) and water-soluble high molecular weight (WSHCH) filled chitosans, respectively; and of 200% and 320% for low molecular weight (LCH) and water-soluble filled (WSLCH) chitosans, respectively. The filled films also showed increased thermal stability, with, for example, an increase in the initial degradation temperature (Tdi) from 227 °C in the unfilled LCH film up to 271 °C in filled LCHNFC50% nanocomposite films, and a maximum degradation temperature (Td1) raising from 304 °C to 313 °C for the same materials.

Place, publisher, year, edition, pages
2010. Vol. 81, no 2, 394-401 p.
Keyword [en]
Chitosan, Mechanical and thermal properties, Nanocomposites, Nanofibrillated cellulose, Transparent films, Water-soluble chitosan
National Category
Nano Technology Composite Science and Engineering
Identifiers
URN: urn:nbn:se:ri:diva-29561DOI: 10.1016/j.carbpol.2010.02.037Scopus ID: 2-s2.0-77953165687OAI: oai:DiVA.org:ri-29561DiVA: diva2:1095716
Note

cited By 85

Available from: 2017-05-15 Created: 2017-05-15 Last updated: 2017-05-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus
By organisation
Innventia
In the same journal
Carbohydrate Polymers
Nano TechnologyComposite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.28.0