Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aerogels from nanofibrillated cellulose with tunable oleophobicity
RISE, Innventia.ORCID iD: 0000-0001-7979-9158
2010 (English)In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 6, no 14, p. 3298-3305Article in journal (Refereed) Published
Abstract [en]

The formation of structured porous aerogels of nanofibrillated cellulose (NFC) by freeze-drying has been demonstrated. The aerogels have a high porosity, as shown by FE-SEM and nitrogen adsorption/desorption measurements, and a very low density (<0.03 g cm-3). The density and surface texture of the aerogels can be tuned by selecting the concentration of the NFC dispersions before freeze-drying. Chemical vapor deposition (CVD) of 1H,1H,2H,2H- perfluorodecyltrichlorosilane (PFOTS) was used to uniformly coat the aerogel to tune their wetting properties towards non-polar liquids. An XPS analysis of the chemical composition of the PFOTS-modified aerogels demonstrated the reproducibility of the PFOTS-coating and the high atomic fluorine concentration (ca. 51%) in the surfaces. The modified aerogels formed a robust composite interface with high apparent contact angles (* ≫ 90°) for castor oil (γlv = 35.8 mN m-1) and hexadecane (γlv = 27.5 mN m-1).

Place, publisher, year, edition, pages
2010. Vol. 6, no 14, p. 3298-3305
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:ri:diva-29557DOI: 10.1039/c001939aScopus ID: 2-s2.0-77954584209OAI: oai:DiVA.org:ri-29557DiVA, id: diva2:1095637
Note

cited By 127

Available from: 2017-05-15 Created: 2017-05-15 Last updated: 2018-08-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lindström, Tom

Search in DiVA

By author/editor
Lindström, Tom
By organisation
Innventia
In the same journal
Soft Matter
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.4