Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Self-organized films from cellulose i nanofibrils using the layer-by-layer technique
RISE, Innventia.ORCID iD: 0000-0001-7979-9158
2010 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 11, no 4, p. 872-882Article in journal (Refereed) Published
Abstract [en]

The possibility of forming self-organized films using only charge-stabilized dispersions of cellulose I nanofibrils with opposite charges is presented, that is, the multilayers were composed solely of anionically and cationically modified microfibrillated cellulose (MFC) with a low degree of substitution. The build-up behavior and the properties of the layer-by-layer (LbL)-constructed films were studied using a quartz crystal microbalance with dissipation (QCM-D) and stagnation point adsorption reflectometry (SPAR). The adsorption behavior of cationic/anionic MFC was compared with that of polyethyleneimine (PEI)/anionic MFC. The water contents of five bilayers of cationic/anionic MFC and PEI/anionic MFC were approximately 70 and 50%, respectively. The MFC surface coverage was studied by atomic force microscopy (AFM) measurements, which clearly showed a more dense fibrillar structure in the five bilayer PEI/anionic MFC than in the five bilayer cationic/anionic MFC. The forces between the cellulose-based multilayers were examined using the AFM colloidal probe technique. The forces on approach were characterized by a combination of electrostatic and steric repulsion. The wet adhesive forces were very long-range and were characterized by multiple adhesive events. Surfaces covered by PEI/anionic MFC multilayers required more energy to be separated than surfaces covered by cationic/anionic MFC multilayers.

Place, publisher, year, edition, pages
2010. Vol. 11, no 4, p. 872-882
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:ri:diva-29567DOI: 10.1021/bm100075eScopus ID: 2-s2.0-77950843535OAI: oai:DiVA.org:ri-29567DiVA, id: diva2:1095633
Note

cited By 59

Available from: 2017-05-15 Created: 2017-05-15 Last updated: 2023-06-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lindström, Tom

Search in DiVA

By author/editor
Lindström, Tom
By organisation
Innventia
In the same journal
Biomacromolecules
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 94 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf