Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oxygen and oil barrier properties of microfibrillated cellulose films and coatings
RISE, Innventia.
RISE, Innventia.ORCID iD: 0000-0001-7979-9158
2010 (English)In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 17, no 3, p. 559-574Article in journal (Refereed) Published
Abstract [en]

The preparation of carboxymethylated microfibrillated cellulose (MFC) films by dispersion-casting from aqueous dispersions and by surface coating on base papers is described. The oxygen permeability of MFC films were studied at different relative humidity (RH). At low RH (0%), the MFC films showed very low oxygen permeability as compared with films prepared from plasticized starch, whey protein and arabinoxylan and values in the same range as that of conventional synthetic films, e.g., ethylene vinyl alcohol. At higher RH’s, the oxygen permeability increased exponentially, presumably due to the plasticizing and swelling of the carboxymethylated nanofibers by water molecules. The effect of moisture on the barrier and mechanical properties of the films was further studied using water vapor sorption isotherms and by humidity scans in dynamic mechanical analysis. The influences of the degree of nanofibrillation/dispersion on the microstructure and optical properties of the films were evaluated by field-emission scanning electron microscopy (FE-SEM) and light transmittance measurements, respectively. FE-SEM micrographs showed that the MFC films consisted of randomly assembled nanofibers with a thickness of 5-10 nm, although some larger aggregates were also formed. The use of MFC as surface coating on various base papers considerably reduced the air permeability. Environmental scanning electron microscopy (E-SEM) micrographs indicated that the MFC layer reduced sheet porosity, i.e., the dense structure formed by the nanofibers resulted in superior oil barrier properties.

Place, publisher, year, edition, pages
2010. Vol. 17, no 3, p. 559-574
Keywords [en]
Barrier, Coating, Films, MFC, Nanocellulose, Nanofibers, Oil, Oxygen permeability, Packaging, SEM
National Category
Paper, Pulp and Fiber Technology Nano Technology
Identifiers
URN: urn:nbn:se:ri:diva-29562DOI: 10.1007/s10570-009-9393-yScopus ID: 2-s2.0-77952430889OAI: oai:DiVA.org:ri-29562DiVA, id: diva2:1095631
Note

cited By 216

Available from: 2017-05-15 Created: 2017-05-15 Last updated: 2023-06-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lindström, Tom

Search in DiVA

By author/editor
Lindström, Tom
By organisation
Innventia
In the same journal
Cellulose
Paper, Pulp and Fiber TechnologyNano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 428 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf