Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanoparticles of WC-Co, WC, Co and Cu of relevance for traffic wear particles – Particle stability and reactivity in synthetic surface water and influence of humic matter
KTH Royal Institute of Technology, Stockholm, Sweden ; Karolinska Institutet, Stockholm, Sweden.
KTH Royal Institute of Technology, Stockholm, Sweden.
KTH Royal Institute of Technology, Stockholm, Sweden.
KTH Royal Institute of Technology, Stockholm, Sweden.
Show others and affiliations
2017 (English)In: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 224, 275-288 p.Article in journal (Refereed) Published
Abstract [en]

Studded tyres made of tungsten carbide cobalt (WC-Co) are in the Northern countries commonly used during the winter time. Tungsten (W)-containing nano- and micron-sized particles have been detected close to busy roads in several European countries. Other typical traffic wear particles consist of copper (Cu). The aims of this study were to investigate particle stability and transformation/dissolution properties of nanoparticles (NPs) of WC-Co compared with NPs of tungsten carbide (WC), cobalt (Co), and Cu. Their physicochemical characteristics (primarily surface oxide and charge) are compared with their extent of sedimentation and metal release in synthetic surface water (SW) with and without two different model organic molecules, 2,3- and 3,4-dihydroxybenzoic acid (DHBA) mimicking certain sorption sites of humic substances, for time periods up to 22 days. The WC-Co NPs possessed a higher electrochemical and chemical reactivity in SW with and without DHBA molecules as compared with NPs of WC, Co, and Cu. Co was completely released from the WC-Co NPs within a few hours of exposure, although it remained adsorbed/bonded to the particle surface and enabled the adsorption of negatively charged DHBA molecules, in contrast with the WC NPs (no adsorption of DHBA). The DHBA molecules were found to rapidly adsorb on the Co and Cu NPs. The sedimentation of the WC and WC-Co NPs was not influenced by the presence of the 2,3- or 3,4-DHBA molecules. A slight influence (slower sedimentation) was observed for the Co NPs, and a strong influence (slower sedimentation) was observed for the Cu NPs in SW with 2,3-DHBA compared with SW alone. The extent of metal release increased in the order: WC < Cu < Co < WC-Co NPs. All NPs released more than 1 wt-% of their metal total mass. The release from the Cu NPs was most influenced by the presence of DHBA molecules.

Place, publisher, year, edition, pages
2017. Vol. 224, 275-288 p.
Keyword [en]
Cobalt, Copper, Metal release, Nanoparticles, Tungsten, Metal nanoparticles, Metals, Molecules, Sedimentation, Tungsten alloys, Tungsten carbide, 3, 4-Dihydroxybenzoic acids, Micron-sized particles, Nanoparticle (NPs), Negatively charged, Physicochemical characteristics, Synthetic surfaces, Tungsten carbide cobalt, Surface waters
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-29319DOI: 10.1016/j.envpol.2017.02.006Scopus ID: 2-s2.0-85011949542OAI: oai:DiVA.org:ri-29319DiVA: diva2:1095125
Available from: 2017-05-12 Created: 2017-05-12 Last updated: 2017-05-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus
By organisation
Chemistry, Materials and Surfaces
In the same journal
Environmental Pollution
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.28.0