Experimental Study of 1.55-μ m EML-Based Optical IM/DD PAM-4/8 Short Reach SystemsShow others and affiliations
2017 (English)In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 29, no 6, p. 523-526, article id 7839925Article in journal (Refereed) Published
Abstract [en]
We experimentally evaluate high-speed intensity modulation/direct detection (IM/DD) transmissions with a 1.55-μ text broadband electro-Absorption modulated laser and pulse amplitude modulations (PAM). We demonstrate 80 Gb/s/ λ PAM-4 and 96 Gb/s/ λ PAM-8 transmissions with low-complexity digital equalizers at the receiver. Performance comparison with different types of equalizers are performed, including linear symbol-spaced feed-forward equalizer (FFE), fractional (half-symbol) spaced FFE and decision feedback equalizer (DFE), with different tap number. It is found that for both cases, a 6-Tap symbol-spaced FFE is sufficient to achieve a stable performance with bit-error-rate below the 7% overhead hard decision forward error correction (7%-OH HD-FEC) threshold over a 4 km standard single mode fiber link. Practical considerations including comparison between adaptive and static equalizer implementation and tolerable fiber chromatic dispersion are discussed.
Place, publisher, year, edition, pages
2017. Vol. 29, no 6, p. 523-526, article id 7839925
Keywords [en]
direct detection, equalizers, optical modulation, Pulse amplitude modulation, Adaptive optics, Amplitude modulation, Bit error rate, Chromatic dispersion, Data communication systems, Decision feedback equalizers, Digital television, Error correction, Light modulation, Modulation, Optical communication, Radio communication, Single mode fibers, Electro-absorption modulated laser, Feedforward equalizer, Fiber chromatic dispersion, Intensity-modulation/direct-detection (IM/DD), Performance comparison, Pulse amplitude modulations (PAM), Standard single mode fibers
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:ri:diva-29334DOI: 10.1109/LPT.2017.2662948Scopus ID: 2-s2.0-85015017150OAI: oai:DiVA.org:ri-29334DiVA, id: diva2:1093948
2017-05-082017-05-082024-03-05Bibliographically approved