Deponigas bildas under syrefria förhållanden i deponier genom mikrobiell nedbrytning av organiskt material. Gasens sammansättning kan variera mycket, men från svenska deponier brukar den generellt bestå av 40-60 % metan, 30-40 % koldioxid och 5-20 % kvävgas. Svavelväte (H2S) är en mycket giftig och korrosiv gas som finns i deponigas i varierande omfattning, från 10 till 30 000 ppm (motsvarar 0,001-3,0 %). Det är önskvärt att deponigas används för el och/eller värmeproduktion, men för att detta ska vara möjligt behöver H2S-halten renas till låga nivåer (< 200 ppm). Höga halter H2S ökar slitaget på motor/panna och därmed frekvensen på servicetillfällen. Det leder till dyra underhållskostnader och i slutändan till förkortad livslängd för anläggningen. För att minska korrosionen är det vanligt att rökgastemperaturen justeras upp, men det leder samtidigt till lägre verkningsgrad och därmed till sämre energiutnyttjande av gasen. I en del fall bedöms gasens innehåll av H2S vara för högt för att kunna användas för energiproduktion. Under 2015 facklades 53 GWh deponigas i Sverige, vilket i många fall beror på problem med höga halter H2S.
Rening av deponigas från H2S leder således till flera nyttigheter; gasens energiinnehåll används effektivare, underhålls- och servicekostnaderna för förbränningsanläggningarna minskar och utsläpp av försurande svaveldioxid från förbränning av deponigas reduceras. Det finns kommersiell reningsteknik för H2S men den är dyr, både vad gäller kapitalkostnad och driftkostnad. Därmed finns ett behov av att ta fram nya billigare reningstekniker som förbättrar driftekonomin vid deponierna och som möjliggör att även deponigas med höga H2S-halter kan utnyttjas för nyttig energiomvandling.
RISE (f.d. JTI - Inst. för jordbruks och miljöteknik) utvecklar tillsammans med SLU nya, potentiellt kostnadseffektiva metoder för att uppgradera biogas till drivmedelskvalité. En av metoderna baseras på att gasen får passera en bädd av fuktig aska (ett s.k. askfilter) varvid koldioxid och H2S fixeras. Hypotesen i det här projektet var att askor med ursprung från förbränning av avfall, RT-flis eller liknande kan användas för att rena bort höga halter H2S från deponigas. Denna typ av askor ska i regel ändå avsättas på deponier och om reningseffekten är god skulle det ge synergieffekter i form av att askan först används för att rena deponigas från svavel innan den avsätts som konstruktionsmaterial på deponier.
I det här projektet utfördes två försök i pilotskala vid en svensk deponi med mycket höga halter H2S, ca 15 000 ppm. Olika gasflöden studerades (0,7-7,6 m3/h) medan askvolymen var lika i de båda försöken, 0,37 m3. Halten H2S i den renade gasen var genomgående mycket låg under behandling, < 10 ppm vid låga gasflöden och < 200 ppm vid höga gasflöden. Två asktyper undersöktes och båda visade sig ha mycket god förmåga att fixera H2S, 44-61 g H2S/kg torr aska. Vid jämförelse med litteraturvärden är det bara en studie som visar upptag i samma storleksordning, övriga studier ligger ca en tiopotens lägre i upptag.
Utifrån försöksresultaten bestämdes den tekniska och ekonomiska potentialen för askfilter som reningsmetod. Beräkningarna gjordes för olika typanläggningar för att på så sätt täcka in vanligt förekommande deponier. För normalstora deponier med gasflöden på 100-1 000 m3/h och H2S-halter mellan 100 och 1 000 ppm uppgår askbehovet till 10-130 ton torr aska per år. För specialfallet där halten H2S är extremt hög ökar askbehovet och för en anläggning med 15 000 ppm H2S och ett gasflöde på 200 m3/h krävs det ca 800 ton torr aska per år. Överlag är det emellertid beskedliga mängder aska som krävs och skulle t.ex. samtliga svenska deponier använda aska för gasrening skulle askbehovet endast vara 0,2-0,3 % av den årliga svenska askproduktionen.
De ekonomiska beräkningarna visar att askfilter är en konkurrenskraftig metod för att rena bort H2S. För specialfallet med extremt höga halter H2S visade det sig att kostnaden för askfilter är drygt 20 % lägre jämfört med den för ändamålet billigaste konventionella reningstekniken på marknaden. Även vid rening av deponigas med mer normala halter H2S står sig askfilter väl. Vid låga flöden kring 100 m3/h är askfilter klart billigare jämfört med litteraturvärden för konventionell reningsteknik. Skalfördelarna tycks dock vara större för de konventionella reningsteknikerna och därför blir skillnaden mellan reningskostnaden för askfilter jämfört med annan teknik mindre vid högre gasflöden.
De låga reningskostnaderna för askfilter kan öppna upp möjligheter för deponier som idag inte renar gas från H2S. Under projektet kontaktades 15 svenska deponier och ingen av dessa hade någon form av H2S-rening. Med rening kan deponigas däremot användas effektivare, t.ex. genom minskad fackling, ökad verkningsgrad för el- och värmeproduktion samt minskat slitage på pannor och förbränningsutrustning. Dessutom minskar emissioner av svavel till atmosfären, vilket även minskar potentiella luktproblem kring deponin.
För fortsatt utveckling är utformning och design av en prototyp av en askfiltermodul i fullskala en central del. Vidare måste den behandlade askan undersökas vad gäller urlakningsegenskaper, lagringsbarhet och användbarhet som konstruktionsmaterial på deponier tillsammans med en bedömning av de samlade miljökonsekvenserna. Försök i fullskala bör även göras vid fler deponier med olika gasflöden och H2S-halter i deponigasen för att verifiera prestanda från de genomförda pilotförsöken.
Deponigas bildas under syrefria förhållanden i deponier genom mikrobiell nedbrytning av organiskt material. Gasens sammansättning kan variera mycket, men från svenska deponier brukar den generellt bestå av 40-60 % metan, 30-40 % koldioxid och 5-20 % kvävgas. Svavelväte (H2S) är en mycket giftig och korrosiv gas som finns i deponigas i varierande omfattning, från 10 till 30 000 ppm (motsvarar 0,001-3,0 %). Det är önskvärt att deponigas används för el och/eller värmeproduktion, men för att detta ska vara möjligt behöver H2S-halten renas till låga nivåer (< 200 ppm). Höga halter H2S ökar slitaget på motor/panna och därmed frekvensen på servicetillfällen. Det leder till dyra underhållskostnader och i slutändan till förkortad livslängd för anläggningen. För att minska korrosionen är det vanligt att rökgastemperaturen justeras upp, men det leder samtidigt till lägre verkningsgrad och därmed till sämre energiutnyttjande av gasen. I en del fall bedöms gasens innehåll av H2S vara för högt för att kunna användas för energiproduktion. Under 2015 facklades 53 GWh deponigas i Sverige, vilket i många fall beror på problem med höga halter H2S.
Rening av deponigas från H2S leder således till flera nyttigheter; gasens energiinnehåll används effektivare, underhålls- och servicekostnaderna för förbränningsanläggningarna minskar och utsläpp av försurande svaveldioxid från förbränning av deponigas reduceras. Det finns kommersiell reningsteknik för H2S men den är dyr, både vad gäller kapitalkostnad och driftkostnad. Därmed finns ett behov av att ta fram nya billigare reningstekniker som förbättrar driftekonomin vid deponierna och som möjliggör att även deponigas med höga H2S-halter kan utnyttjas för nyttig energiomvandling.
RISE (f.d. JTI - Inst. för jordbruks och miljöteknik) utvecklar tillsammans med SLU nya, potentiellt kostnadseffektiva metoder för att uppgradera biogas till drivmedelskvalité. En av metoderna baseras på att gasen får passera en bädd av fuktig aska (ett s.k. askfilter) varvid koldioxid och H2S fixeras. Hypotesen i det här projektet var att askor med ursprung från förbränning av avfall, RT-flis eller liknande kan användas för att rena bort höga halter H2S från deponigas. Denna typ av askor ska i regel ändå avsättas på deponier och om reningseffekten är god skulle det ge synergieffekter i form av att askan först används för att rena deponigas från svavel innan den avsätts som konstruktionsmaterial på deponier.
I det här projektet utfördes två försök i pilotskala vid en svensk deponi med mycket höga halter H2S, ca 15 000 ppm. Olika gasflöden studerades (0,7-7,6 m3/h) medan askvolymen var lika i de båda försöken, 0,37 m3. Halten H2S i den renade gasen var genomgående mycket låg under behandling, < 10 ppm vid låga gasflöden och < 200 ppm vid höga gasflöden. Två asktyper undersöktes och båda visade sig ha mycket god förmåga att fixera H2S, 44-61 g H2S/kg torr aska. Vid jämförelse med litteraturvärden är det bara en studie som visar upptag i samma storleksordning, övriga studier ligger ca en tiopotens lägre i upptag.
Utifrån försöksresultaten bestämdes den tekniska och ekonomiska potentialen för askfilter som reningsmetod. Beräkningarna gjordes för olika typanläggningar för att på så sätt täcka in vanligt förekommande deponier. För normalstora deponier med gasflöden på 100-1 000 m3/h och H2S-halter mellan 100 och 1 000 ppm uppgår askbehovet till 10-130 ton torr aska per år. För specialfallet där halten H2S är extremt hög ökar askbehovet och för en anläggning med 15 000 ppm H2S och ett gasflöde på 200 m3/h krävs det ca 800 ton torr aska per år. Överlag är det emellertid beskedliga mängder aska som krävs och skulle t.ex. samtliga svenska deponier använda aska för gasrening skulle askbehovet endast vara 0,2-0,3 % av den årliga svenska askproduktionen.
De ekonomiska beräkningarna visar att askfilter är en konkurrenskraftig metod för att rena bort H2S. För specialfallet med extremt höga halter H2S visade det sig att kostnaden för askfilter är drygt 20 % lägre jämfört med den för ändamålet billigaste konventionella reningstekniken på marknaden. Även vid rening av deponigas med mer normala halter H2S står sig askfilter väl. Vid låga flöden kring 100 m3/h är askfilter klart billigare jämfört med litteraturvärden för konventionell reningsteknik. Skalfördelarna tycks dock vara större för de konventionella reningsteknikerna och därför blir skillnaden mellan reningskostnaden för askfilter jämfört med annan teknik mindre vid högre gasflöden.
De låga reningskostnaderna för askfilter kan öppna upp möjligheter för deponier som idag inte renar gas från H2S. Under projektet kontaktades 15 svenska deponier och ingen av dessa hade någon form av H2S-rening. Med rening kan deponigas däremot användas effektivare, t.ex. genom minskad fackling, ökad verkningsgrad för el- och värmeproduktion samt minskat slitage på pannor och förbränningsutrustning. Dessutom minskar emissioner av svavel till atmosfären, vilket även minskar potentiella luktproblem kring deponin.
För fortsatt utveckling är utformning och design av en prototyp av en askfiltermodul i fullskala en central del. Vidare måste den behandlade askan undersökas vad gäller urlakningsegenskaper, lagringsbarhet och användbarhet som konstruktionsmaterial på deponier tillsammans med en bedömning av de samlade miljökonsekvenserna. Försök i fullskala bör även göras vid fler deponier med olika gasflöden och H2S-halter i deponigasen för att verifiera prestanda från de genomförda pilotförsöken.
Landfill gas is formed under anaerobic conditions in landfills by microbial degradation of organic material. The gas composition can vary, but at Swedish landfills the gas generally consists of 40-60% methane, 30-40% carbon dioxide and 5-20% nitrogen. Hydrogen sulphide (H2S) is a highly toxic and corrosive gas, which occur in landfill gas in varying concentrations, from 10 to 30,000 ppm (equivalent to 0.001 to 3.0%). It is desirable that the landfill gas is used for electricity and/or heat production, but to do that there is a need to clean the gas to reach <200 ppm H2S. High levels of H2S increases wear on the engine/boiler and thus the frequency of servicing. This leads to expensive maintenance costs, and ultimately shortens the economic life of the plant. To reduce corrosion, it is common to adjust the flue gas temperature, but this also leads to a lower efficiency and thus reduces the energy utilization of the gas. In some cases the gas concentration of H2S is judged to be too high to be used for energy production at all. In 2015, approximately 53 GWh of landfill gas was flared in Sweden, which in many cases is due to problems with high levels of H2S.
Cleaning of landfill gas from H2S leads to several values; the gas energy is used efficiently, maintenance and service costs of the engines/boiler are reduced, and emissions of acidifying sulphur dioxide from combustion of landfill gas decreases. There are commercial cleaning technologies for H2S but they are expensive, both in terms of capital cost and operating cost. Thus, there is a need to develop new cost efficient cleaning technologies that improve the economic outcome at landfills and that enables landfill gas with high H2S concentrations to be utilized for valuable energy transformation.
RISE (formerly JTI – Swedish Institute of Agricultural and Environmental Engineering) together with SLU develops new, potentially cost-efficient methods for upgrading biogas to fuel quality. One of the methods is based on the gas passing through a bed of moist ash (a so-called ash filter), where carbon dioxide and H2S are fixed. The hypothesis of this project was that ashes originating from the incineration of waste, recycled waste wood etc., can be used to clean the high levels of H2S in landfill gas. This type of ashes will usually be disposed of in landfills anyway and if the treatment effect is good, it would generate synergy effects in the form of the ash first being used to clean landfill gas from sulphur before it is used as a construction material at landfills.
This project performed two trials in pilot scale at a Swedish landfill with very high concentration of H2S, approximately 15,000 ppm. Different gas flow rates were studied (0.7 to 7.6 m3 / h), while the volume of ash used were similar in the two trials, 0,37 m3. The concentration of H2S in the cleaned gas was consistently very low during treatment, < 10 ppm at low gas flow rates and < 200 ppm at high gas flow rates. Two types of ash were investigated and both proved to have very good capacity to fix H2S, 44-61 g H2S/kg dry ash. In comparison with literature values, there is only one study showing an uptake capacity in the same order. Other studies report an order of magnitude lower uptake capacity.
Based on the experimental results, the technical and economic potential for an ash filter as the cleaning method was assessed. The calculations were made for various typical landfills to cover the different range of landfills. For normal sized landfills with gas flow rates of 100-1 000 m3/h and H2S concentrations between 100 and 1 000 ppm, the amount of ash needed is 10-130 tons of dry ash per year. For the special case where the H2S concentration is extremely high, the amount of ash increases and a plant with 15 000 ppm H2S and a gas flow rate of 200 m3/h requires approximately 800 tons of dry ash per year. However, overall modest amounts of ash is required and considering all Swedish landfills the requirement of ash would be only 0.2-0.3% of the annual production of ash in Sweden.
The economic calculations show that the ash filter is a competitive method for removal of H2S. For the special case of extremely high levels of H2S, it turned out that the cost of the ash filter is approximately 20% lower in comparison with the cheapest feasible conventional cleaning technology on the market. Also for the cleaning of landfill gas at more normal levels of H2S, the ash filter is competitive. At low gas flow rates (100 m3/h), the ash filter is clearly competitive compared to literature values for conventional cleaning technologies. The economy of scale seems to be higher for the conventional cleaning technologies, and consequently the difference between the cost of ash filter cleaning and other technologies is less at higher gas flow rates.
The low treatment cost of the ash filter reveals opportunities for landfills that currently do not clean the gas from H2S. During the project 15 Swedish landfills was contacted and none of these reported any form of H2S cleaning. When using cleaning, the landfill gas can be used effectively, i.e. reduced flaring, increased efficiency of electricity and heat production with reduced wear on boilers and combustion equipment as well as reduced emissions of sulphur into the atmosphere, which also reduces the potential odour problems around the landfill.
For further development, the design of an ash filter module prototype at full-scale is important. Furthermore, the treated ashes should be analysed for leaching characteristics, storability and usability as construction materials or as cover landfills along with an assessment of the overall environmental impact. Further tests at full scale should be made at other landfills with various gas flow rates and H2S concentrations to verify the performance of the conducted pilot tests.
2017. , p. 32
landfill gas, hydrogen sulphide, hydrogen sulfide, ash, ash filter, sulfur removal, gas cleaning