Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The influence of controlled surface nanotopography on the early biological events of osseointegration.
Sahlgrenska Academy, University of Gothenburg, Sweden ; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden.
RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces. BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden. (KMm)ORCID iD: 0000-0003-4592-5851
Sahlgrenska Academy, University of Gothenburg, Sweden ; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden.
Sahlgrenska Academy, University of Gothenburg, Sweden ; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden.
Show others and affiliations
2017 (English)In: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, S1742-7061(17)30132-0Article in journal (Refereed) Epub ahead of print
Abstract [en]

The early cell and tissue interactions with nanopatterned titanium implants are insufficiently described in vivo. A limitation has been to transfer a pre-determined, well-controlled nanotopography to 3D titanium implants, without affecting other surface parameters, including surface microtopography and chemistry. This in vivo study aimed to investigate the early cellular and molecular events at the bone interface with screw-shaped titanium implants superimposed with controlled nanotopography. Polished and machined titanium implants were firstly patterned with 75-nm semispherical protrusions. Polished and machined implants without nano-patterns were designated as controls. Thereafter, all nanopatterned and control implants were sputter-coated with a 30nm titanium layer to unify the surface chemistry. The implants were inserted in rat tibiae and samples were harvested after 12h, 1d and 3d. In one group, the implants were unscrewed and the implant-adherent cells were analyzed using quantitative polymerase chain reaction. In another group, implants with surrounding bone were harvested en bloc for histology and immunohistochemistry. The results showed that nanotopography downregulated the expression of monocyte chemoattractant protein-1 (MCP-1), at 1d, and triggered the expression of osteocalcin (OC) at 3d. This was in parallel with a relatively lower number of recruited CD68-positive macrophages in the tissue surrounding the nanopatterned implants. Moreover, a higher proportion of newly formed osteoid and woven bone was found at the nanopatterned implants at 3d. It is concluded that nanotopography, per se, attenuates the inflammatory process and enhances the osteogenic response during the early phase of osseointegration. This nanotopography-induced effect appeared to be independent of the underlying microscale topography.

STATEMENT OF SIGNIFICANCE: This study provides a first line of evidence that pre-determined nanopatterns on clinically relevant, screw-shaped, titanium implants can be recognized by cells in the complex in vivo environment. Until now, most of the knowledge relating to cell interactions with nanopatterned surfaces has been acquired from in vitro studies involving mostly two-dimensional nanopatterned surfaces of varying chemical composition. We have managed to superimpose pre-determined nanoscale topography on polished and micro-rough, screw-shaped, implants, without changes in the microscale topography or chemistry. This was achieved by colloidal lithography in combination with a thin titanium film coating on top of both nanopatterned and control implants. The early events of osseointegration were evaluated at the bone interface to these implants. The results revealed that nanotopography, as such, elicits downregulatory effects on the early recruitment and activity of inflammatory cells while enhancing osteogenic activity and woven bone formation.

Place, publisher, year, edition, pages
2017. S1742-7061(17)30132-0
Keyword [en]
Gene expression, In vivo, Nanotopography, Osseointegration, Titanium
National Category
Biomaterials Science
Identifiers
URN: urn:nbn:se:ri:diva-29220DOI: 10.1016/j.actbio.2017.02.026PubMedID: 28232253OAI: oai:DiVA.org:ri-29220DiVA: diva2:1087123
Funder
VINNOVARegion Västra Götaland
Available from: 2017-04-05 Created: 2017-04-05 Last updated: 2017-04-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Petronis, Sarunas
By organisation
Chemistry, Materials and Surfaces
In the same journal
Acta Biomaterialia
Biomaterials Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.24.0