Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applicationsShow others and affiliations
2017 (English)In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 225, p. 55-63Article in journal (Refereed) Published
Abstract [en]
Organic polymer thermoelectrics (TE) as well as transition metal (TM) silicides are two thermoelectric class of materials of interest because they are composed of atomic elements of high abundance; which is a prerequisite for mass implementation of thermoelectric (TE) solutions for solar and waste heat recovery. But both materials have drawbacks when it comes to finding low-cost manufacturing. The metal silicide needs high temperature (>1000 °C) for creating TE legs in a device from solid powder, but it is easy to achieve long TE legs in this case. On the contrary, organic TEs are synthesized at low temperature from solution. However, it is difficult to form long legs or thick films because of their low solubility. In this work, we propose a novel method for the room temperature synthesis of TE composite containing the microparticles of chromium disilicide; CrSi2 (inorganic filler) in an organic matrix of nanofibrillated cellulose- poly(3,4-ethyelenedioxythiophene)-polystyrene sulfonate (NFC-PEDOT:PSS). With this method, it is easy to create long TE legs in a room temperature process. The originality of the approach is the use of conducting polymer aerogel microparticles mixed with CrSi2 microparticles to obtain a composite solid at room temperature under pressure. We foresee that the method can be scaled up to fabricate and pattern TE modules. The composite has an electrical conductivity (Ï) of 5.4 ± 0.5 S/cm and the Seebeck coefficient (α) of 88 ± 9 ΌV/K, power factor (α2Ï) of 4 ± 1 ΌWmâ1Kâ2 at room temperature. At a temperature difference of 32 °C, the output power/unit area drawn across the load, with the resistance same as the internal resistance of the device is 0.6 ± 0.1 ΌW/cm2.
Place, publisher, year, edition, pages
2017. Vol. 225, p. 55-63
Keywords [en]
Chromium, Conducting polymers, Organic polymers, Silicides, Temperature, Thick films, Transition metal compounds, Transition metals, Waste heat, Waste heat utilization
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-29121DOI: 10.1016/j.synthmet.2017.01.007Scopus ID: 2-s2.0-85013421316OAI: oai:DiVA.org:ri-29121DiVA, id: diva2:1081704
Funder
Swedish Energy Agency, 307596EU, European Research CouncilKnut and Alice Wallenberg FoundationSwedish Foundation for Strategic Research 2017-03-142017-03-142023-05-19Bibliographically approved