Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamic manipulation of optical anisotropy of suspended Poly-3-hexylthiophene nanofibers
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
Show others and affiliations
2016 (English)In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 4, no 10, p. 1651-1656Article in journal (Refereed) Published
Abstract [en]

Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline semiconducting nanostructures, which are known for their application in photovoltaics. Due to the internal arrangement, P3HT nanofibers possess optical anisotropy, which can be enhanced on a macroscale if nanofibers are aligned. Alternating electric field, applied to a solution with dispersed nanofibers, causes their alignment and serves as a method to produce solid layers with ordered nanofibers. The transmission ellipsometry measurements demonstrate the dichroic absorption and birefringence of ordered nanofibers in a wide spectral range of 400–1700 nm. Moreover, the length of nanofibers has a crucial impact on their degree of alignment. Using electric birefringence technique, it is shown that external electric field applied to the solution with P3HT nanofibers can cause direct birefringence modulation. Dynamic alignment of dispersed nanofibers changes the refractive index of the solution and, therefore, the polarization of transmitted light. A reversible reorientation of nanofibers is organized by using a quadrupole configuration of poling electrodes. With further development, the described method can be used in the area of active optical fiber components, lab-on-chip or sensors. It also reveals the potential of 1D conducting polymeric structures as objects whose highly anisotropic properties can be implemented in electro-optical applications.​.

Place, publisher, year, edition, pages
2016. Vol. 4, no 10, p. 1651-1656
Keywords [en]
anisotropic optical materials, electrooptical materials, nanofibers, optical properties, polymers, Anisotropy, Birefringence, Electric fields, Optical anisotropy, Optical fibers, Refractive index, Alternating electric field, Electric birefringence, Electro-optical applications, External electric field, Quadrupole configuration, Semiconducting nanostructures, Transmission ellipsometry
National Category
Atom and Molecular Physics and Optics Condensed Matter Physics Composite Science and Engineering Materials Chemistry
Identifiers
URN: urn:nbn:se:ri:diva-27605DOI: 10.1002/adom.201600226Scopus ID: 2-s2.0-84979574389OAI: oai:DiVA.org:ri-27605DiVA, id: diva2:1059688
Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2023-05-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sugunan, Abhilash

Search in DiVA

By author/editor
Sugunan, Abhilash
By organisation
Material och ytteknik
In the same journal
Advanced Optical Materials
Atom and Molecular Physics and OpticsCondensed Matter PhysicsComposite Science and EngineeringMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 529 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf