Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cold flow experiments in an entrained flow gasification reactor with a swirl-stabilized pulverized biofuel burner
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
2016 (English)In: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 85, 267-277 p.Article in journal (Refereed) Published
Abstract [en]

Short particle residence time in entrained flow gasifiers demands the use of pulverized fuel particles to promote mass and heat transfer, resulting high fuel conversion rate. The pulverized biomass particles have a wide range of aspect ratios which can exhibit different dispersion behavior than that of spherical particles in hot product gas flows. This results in spatial and temporal variations in temperature distribution, the composition and the concentration of syngas and soot yield. One way to control the particle dispersion is to impart a swirling motion to the carrier gas phase. This paper investigates the dispersion behavior of biomass fuel particles in swirling flows. A two-phase particle image velocimetry technique was applied to simultaneously measure particle and gas phase velocities in turbulent isothermal flows. Post-processed PIV images showed that a poly-dispersed behavior of biomass particles with a range of particle size of 112–160 µm imposed a significant impact on the air flow pattern, causing air flow decelerated in a region of high particle concentration. Moreover, the velocity field, obtained from individually tracked biomass particles showed that the swirling motion of the carrier air flow gives arise a rapid spreading of the particles. © 2016 Elsevier Ltd

Place, publisher, year, edition, pages
2016. Vol. 85, 267-277 p.
Keyword [en]
Biomass, Particle image velocimetry, Particle-laden turbulent flow and entrained flow reactor, Swirl-stabilized burner, Aspect ratio, Dispersions, Flow patterns, Flow visualization, Fuel gages, Fuels, Gases, Heat transfer, Particle size, Pulverized fuel, Residence time distribution, Velocimeters, Velocity, Velocity measurement, Entrained flow gasification, Entrained flow gasifiers, Entrained Flow Reactor, Particle concentrations, Particle image velocimetries, Spatial and temporal variation, Swirl-stabilized burners, Turbulent isothermal flow, Air
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27606DOI: 10.1016/j.ijmultiphaseflow.2016.06.016Scopus ID: 2-s2.0-84978033454OAI: oai:DiVA.org:ri-27606DiVA: diva2:1059685
Note

References: Bhuiyan, A.A., Naser, J., Numerical Modeling of biomass co–combustion with pulverized coal in a small scale furnace (2015) Procedia Eng., 105, pp. 504-511; Bhuiyan, A.A., Naser, J., CFD modelling of co-firing of biomass with coal under oxy-fuel combustion in a large scale power plant (2015) Fuel, 159, pp. 150-168; Black, D.L., McQuay, M.Q., Laser-based particle measurements of spherical and nonspherical particles (2001) Int. J. Multiph. Flow, 27, pp. 1333-1362; Capone, A., Romano, G.P., Soldati, A., Experimental investigation on interactions among fluid and rod-like particles in a turbulent pipe jet by means of particle image velocimetry (2014) Exp. Fluids, 56, pp. 1-15; Chigier, N.A., Chervinsky, A., Experimental investigation of swirling vortex motion in jets (1967) J. Appl. Mech., 34, p. 443; Claypole, T.C., Syred, N., The effect of swirl burner aerodynamics on NOx formation (1981) Symp. Combust., 18, pp. 81-89; Di Giacinto, M., Sabetta, F., Piva, R., Two-way coupling effects in dilute gas-particle flows (1982) J Fluids Eng. Trans. ASME; Elbersen, B., Startisky, I., Hengeveld, G., Schelhaas, M., Naeff, H., Böttcher, H., (2012) Atlas of EU biomass potentials, , http://www.biomassfutures.eu/public_docs/final_deliverables/WP3/D3.3 Atlas of technical and economic biomass potential.pdf, Retrieved July 16, 2015, from; Fan, J., Zhang, L., Zhao, H., Cen, K., Particle concentration and particle size measurements in a particle laden turbulent free jet (1990) Exp. Fluids, 9, pp. 320-322; Fan, J., Zhao, H., Cen, K., An experimental study of two-phase turbulent coaxial jets (1992) Exp. Fluids, 13, pp. 279-287; Fessler, J.R., Kulick, J.D., Eaton, J.K., Preferential concentration of heavy particles in a turbulent channel flow (1994) Phys. Fluids, 6, pp. 3742-3749; Froud, D., Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions (1995) Combust. Flame.; Göktepe, B., Umeki, K., Gebart, R., Does distance among biomass particles affect soot formation in an entrained flow gasification process? (2016) Fuel Process. Technol., 141, pp. 99-105; Gui, N., Fan, J., Zhou, Z., Particle statistics in a gas–solid coaxial strongly swirling flow: a direct numerical simulation (2010) Int. J. Multiph. Flow, 36, pp. 234-243; Guitton, D.E., Newman, B.G., Self-preserving turbulent wall jets over convex surfaces (1977) J. Fluid Mech., 81 (1), pp. 155-185; Gupta, A.K., Lilley, D.G., Syred, N., Swirl flows (1984), Abacus Press Kent, EnglandHigman, C., Tam, S., Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels (2014) Chem. Rev., 114, pp. 1673-1708; Higman, C., van der Burgt, M., (2008), Gasification, Gasification. doi:10.1016/B978-0-7506-8528-3.00003-1Huang, Y., Yang, V., Dynamics and stability of lean-premixed swirl-stabilized combustion (2009) Prog. Energy Combust. Sci.; Hussein, H.J., Capp, S.P., George, W.K., Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet (1994) J. Fluid Mech., 258, pp. 31-75; Legrand, M., Nogueira, J., Lecuona, A., Nauri, S., Rodríguez, P.A., Atmospheric low swirl burner flow characterization with stereo PIV (2010) Exp. Fluids, 48, pp. 901-913; Liang, H., Maxworthy, T., An experimental investigation of swirling jets (2005) J. Fluid Mech., 525, pp. 115-159; Longmire, E.K., Eaton, J.K., Structure of a particle-laden round jet (1992) J. Fluid Mech., 236, pp. 217-257; Lucca-Negro, O., O'Doherty, T., Vortex breakdown: a review (2001) Prog. Energy Combust. Sci., 27, pp. 431-481; Öhrman, O.G.W., Molinder, R., Weiland, F., Johansson, A.-C., Analysis of trace compounds generated by pressurized oxygen blown entrained flow biomass gasification (2014) Environ. Prog. Sustain. Energy, 33 (3), pp. 699-705. , 00, n/a–n/a; Panchapakesan, N.R., Lumley, J.L., Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet (1993) J. Fluid Mech., 246, pp. 197-223; Pollard, A., Ozem, H.L.M., Grandmaison, E.W., Turbulent, swirling flow over an axisymmetric, constant radius surface (2005) Exp. Therm. Fluid Sci., 29, pp. 493-509; Pope, S.B., Turbulent Flows, Book (2000), doi:10.1088/1468-5248/1/1/702Qi, G., Nathan, G.J., Lau, T.C.W., Velocity and orientation distributions of fibrous particles in the near-field of a turbulent jet (2015) Powder Technol, 276, pp. 10-17; Qin, K., Jensen, P.A., Lin, W., Jensen, A.D., Biomass gasification behavior in an entrained flow reactor: gas product distribution and soot formation (2012) Energy Fuels, 26, pp. 5992-6002; Rostrup-Nielsen, J., Christiansen, L., Concepts in Syngas Manufacture (2011), Imperial College Press LondonRusso, E., Kuerten, J.G.M., Geurts, B.J., Delay of biomass pyrolysis by gas–particle interaction (2014) J. Anal. Appl. Pyrolysis, 110, pp. 88-99; Ryan, W., Annamalai, K., Group ignition of a cloud of coal particles (1991) J. Heat Transfer, 113, pp. 677-687; Saber, A., Transport of Particles in Turbulent Flow with Application to Bio-Fuels (2014), Luleå tekniska universitet (Licentiate thesis / Luleå University of Technology)Sommerfeld, M., Qiu, H.-H., Detailed measurements in a swirling particulate two-phase flow by a phase-Doppler anemometer (1991) Int. J. Heat Fluid Flow, 12, pp. 20-28; van Wachem, B., Zastawny, M., Zhao, F., Mallouppas, G., Modelling of gas–solid turbulent channel flow with non-spherical particles with large Stokes numbers (2015) Int. J. Multiph. Flow, 68, pp. 80-92; Weiland, F., Hedman, H., Marklund, M., Wiinikka, H., Öhrman, O., Gebart, R., Pressurized oxygen blown entrained-flow gasification of wood powder (2013) Energy Fuels, 27, pp. 932-941; Weiland, F., Pressurized Entrained Flow Gasification of Pulverized Biomass: Experimental Characterization of Process Performance (2015), Luleå tekniska universitet (Doctoral thesis / Luleå University of Technology)Wood, A.M., Hwang, W., Eaton, J.K., Preferential concentration of particles in homogeneous and isotropic turbulence (2005) Int. J. Multiph. Flow, 31, pp. 1220-1230; Wygnanski, I., Fiedler, H., Some measurements in the self-preserving jet (1969) J. Fluid Mech., 38 (3), pp. 577-612; Xu, G., Antonia, R.A., Effect of different initial conditions on a turbulent round free jet (2002) Exp. Fluids, 33, pp. 677-683; Zhao, Y., Kim, H.Y., Yoon, S.S., Transient group combustion of the pulverized coal particles in spherical cloud (2007) Fuel, 86, pp. 1102-1111; Zhou, L., Li, Y., Chen, T., Xu, Y., Studies on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer (2000) Powder Technol., 112, pp. 79-86

Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2016-12-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus
By organisation
SP Energy Technology Center
In the same journal
International Journal of Multiphase Flow
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.26.0