Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integrating Microalgal Production with Industrial Outputs - Reducing Process Inputs and Quantifying the Benefits
RISE, SP – Sveriges Tekniska Forskningsinstitut.
2016 (English)In: Industrial Biotechnology, ISSN 1550-9087, E-ISSN 1931-8421, Vol. 12, no 4, 219-234 p.Article in journal (Refereed) Published
Abstract [en]

The cultivation and processing of microalgal biomass is resource- and energy-intensive, negatively affecting the sustainability and profitability of producing bulk commodities, limiting this platform to the manufacture of relatively small quantities of high-value compounds. A biorefinery approach where all fractions of the biomass are valorized might improve the case for producing lower-value products. However, these systems are still likely to operate very close to thresholds of profitability and energy balance, with wide-ranging environmental and societal impacts. It thus remains critically important to reduce the use of costly and impactful inputs and energy-intensive processes involved in these scenarios. Integration with industrial infrastructure can provide a number of residual streams that can be readily used during microalgal cultivation and downstream processing. This review critically considers some of the main inputs required for microalgal biorefineries - such as nutrients, water, carbon dioxide, and heat - and appraises the benefits and possibilities for industrial integration on a more quantitative basis. Recent literature and demonstration studies will also be considered to best illustrate these benefits to both producers and industrial operators. Additionally, this review will highlight some inconsistencies in the data used in assessments of microalgal production scenarios, allowing more accurate evaluation of potential future biorefineries. © Joshua J. Mayers, et al., 2016; Published by Mary Ann Liebert, Inc. 2016.

Place, publisher, year, edition, pages
2016. Vol. 12, no 4, 219-234 p.
Keyword [en]
Carbon, Carbon dioxide, Processing, Profitability, Refining, Downstream-processing, Industrial infrastructure, Industrial integration, Industrial outputs, Microalgal biomass, Microalgal cultivations, Reducing process, Societal impacts, Sustainable development
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27634DOI: 10.1089/ind.2016.0006Scopus ID: 2-s2.0-84983379983OAI: oai:DiVA.org:ri-27634DiVA: diva2:1059530
Note

References: Leu, S., Boussiba, S., Advances in the production of high-value products by microalgae (2014) Biotechnol, 10 (3), pp. 169-183; Quinn, J.C., Hoffman, J., Pate, R., Economic feasibility and Life Cycle Impact of a turf-scrubber based biorefinery [presentation] (2015) Algal Biomass Summit 2015, , 2015 Sept. 29-Oct 2; Washington, DC; Jones, S.B., Zhu, Y., Anderson, D.B., (2014) Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading, , www.pnnl.gov/main/publications/external/technical_reports/PNNL-23227.pdf, (Last accessed June 2016); Quinn, J.C., Davis, R., The potentials and challenges of algae-based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling (2014) Bioresour Technol, 184, pp. 444-452; Sills, D.L., Paramita, V., Franke, M.J., Quantitative uncertainty analysis of Life Cycle Assessment for algal biofuel production (2013) Environ Sci Technol, 47 (2), pp. 687-694; Zaimes, G.G., Khanna, V., Microalgal biomass production pathways: Evaluation of life cycle environmental impacts (2013) Biotechnol Biofuels, 6 (1), p. 88; Beal, C.M., Gerber, L.N., Sills, D.L., Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment (2015) Algal Res, 10, pp. 266-279; Canter, C.E., Blowers, P., Handler, R.M., Shonnard, D.R., Implications of widespread algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and evaluation of potential alternate nutrient sources (2015) Appl Energ, 143, pp. 71-80; Taelman, S.E., De Meester, S., Van Dijk, W., Silva, V., Dewulf, J., Environmental sustainability analysis of a protein-rich livestock feed ingredient in the Netherlands: Microalgae production versus soybean import (2015) Resour Conserv Recycl, 101, pp. 61-72; Milledge, J.J., Commercial application of microalgae other than as biofuels: A brief review (2010) Rev Environ Sci Biotechnol, 10 (1), pp. 31-41; Handler, R.M., Shonnard, D.R., Kalnes, T.N., Lupton, F.S., Life cycle assessment of algal biofuels: Influence of feedstock cultivation systems and conversion platforms (2014) Algal Res, 4, pp. 105-115; Huntley, M.E., Johnson, Z.I., Brown, S.L., Demonstrated large-scale production of marine microalgae for fuels and feed (2015) Algal Res, 10, pp. 249-265; Quinn, J.C., Smith, T.G., Downes, C.M., Quinn, C., Microalgae to biofuels lifecycle assessment-Multiple pathway evaluation (2014) Algal Res, 4, pp. 116-122; Monari, C., Righi, S., Olsen, S.I., Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: A life-cycle modeling (2016) J Clean Prod, 112, pp. 4084-4092; Bennion, E.P., Ginosar, D.M., Moses, J., Agblevor, F., Quinn, J.C., Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways (2015) Appl Energ, 154, pp. 1062-1071; Andersson, V., Broberg Viklund, S., Hackl, R., Karlsson, M., Berntsson, T., Algaebased biofuel production as part of an industrial cluster (2014) Biomass Bioenerg, 71, pp. 113-124; Moncada, J., Cardona, C.A., Rincon, L.E., Design and analysis of a second and third generation biorefinery: The case of castorbean and microalgae (2015) Bioresour Technol, 198, pp. 836-843; Fortier, M.O.P., Roberts, G.W., Stagg-Williams, S.M., Sturm, B.S.M., Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae (2014) Appl Energ, 122, pp. 73-82; (2009) European Parliament, Council of the European Union, , http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0029, Directive 2009/ 29/EC(Last accessed June 2016); Collet, P., Helias, A., Lardon, L., Steyer, J.P., Bernard, O., Recommendations for Life Cycle Assessment of algal fuels (2015) Appl Energ, 154, pp. 1089-1102; Bradley, T., Maga, D., Anton, S., Unified approach to Life Cycle Assessment between three unique algae biofuel facilities (2015) Appl Energ, 154, pp. 1052-1061; Quinn, J.C., Catton, K.B., Johnson, S., Bradley, T.H., Geographical assessment of microalgae biofuels potential incorporating resource availability (2012) Bioenerg Res, 6 (2), pp. 591-600; Venteris, E.R., McBride, R.C., Coleman, A.M., Skaggs, R.L., Wigmosta, M.S., Siting algae cultivation facilities for biofuel production in the United States: Trade-offs between growth rate, site constructability, water availability, and infrastructure (2014) Environ Sci Technol, 48 (6), pp. 3559-3566; Venteris, E.R., Skaggs, R.L., Wigmosta, M.S., Coleman, A.M., Regional algal biofuel production potential in the coterminous United States as affected by resource availability trade-offs (2014) Algal Res, 5, pp. 215-225; Vree, J.H., Bosma, R., Janssen, M., Barbosa, M.J., Wijffels, R.H., Comparison of four outdoor pilot-scale photobioreactors (2015) Biotechnol Biofuels, 8 (1), p. 215; Eustance, E., Badvipour, S., Wray, J.T., Sommerfeld, M.R., Biomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactors (2015) J Appl Phycol, 28 (3), pp. 1-13; Chini Zittelli, G., Biondi, N., Rodolfi, L., Tredici, M.R., Photobioreactors for mass production of microalgae (2013) Handbook of Microalgal Culture: Applied Phycology and Biotechnology, pp. 225-266. , Richmond A, Hu Q, eds., Second Edition. John Wiley &Sons, Ltd, Oxford, UK, 2013; Williams, P.J., Le, B., Laurens, L.M.L., Microalgae as biodiesel &biomass feedstocks: Review &analysis of the biochemistry, energetics &economics (2010) Energ Environ Sci, 3 (5), pp. 554-590; Robertson, D.E., Jacobson, S.A., Morgan, F., A new dawn for industrial photosynthesis (2011) Photosynth Res, 107 (3), pp. 269-277; Slegers, P.M., Losing, M.B., Wijffels, R.H., Van Straten, G., Boxtel, A.J.B., Scenario evaluation of open pond microalgae production (2013) Algal Res, 2 (4), pp. 358-368; Kenny, P., Flynn, K.J., In silico optimization for production of biomass and biofuel feedstocks from microalgae (2014) J Appl Phycol, 27 (1), pp. 33-48; Chiaramonti, D., Prussi, M., Casini, D., Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible (2013) Appl Energy, 102, pp. 101-111; Godos, I., Mendoza, J.L., Acien, F.G., Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases (2014) Bioresour Technol, 153, pp. 307-314; San Pedro, A., Gonzalez-Lopez, C.V., Acien, F.G., Molina-Grima, E., Outdoor pilot production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in raceway ponds (2015) Algal Res, 8, pp. 205-213; Kumar, K., Mishra, S.K., Shrivastav, A., Park, M.S., Yang, J.W., Recent trends in the mass cultivation of algae in raceway ponds (2015) Renew Sustain Energ Rev, 51, pp. 875-885; Eustance, E., Wray, J.T., Badvipour, S., Sommerfeld, M.R., The effects of cultivation depth, areal density, and nutrient level on lipid accumulation of Scenedesmus acutus in outdoor raceway ponds (2015) J Appl Phycol, 28 (3), pp. 1-11; Collet, P., Helias, A., Lardon, L., Life-cycle assessment of microalgae culture coupled to biogas production (2011) Bioresour Technol, 102 (1), pp. 207-214; Clarens, A.F., Resurreccion, E.P., White, M.A., Colosi, L.M., Environmental life cycle comparison of algae to other bioenergy feedstocks (2010) Environ Sci Technol, 44 (5), pp. 1813-1819; Rogers, J.N., Rosenberg, J.N., Guzman, B.J., A critical analysis of paddlewheeldriven raceway ponds for algal biofuel production at commercial scales (2014) Algal Res, 4, pp. 76-88; Campbell, P.K., Beer, T., Batten, D., Life cycle assessment of biodiesel production from microalgae in ponds (2011) Bioresour Technol, 102 (1), pp. 50-56; Kadam, K., Environmental implications of power generation via coalmicroalgae cofiring (2002) Energy, 27 (10), pp. 905-922; Brentner, L.B., Eckelman, M.J., Zimmerman, J.B., Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel (2011) Environ Sci Technol, 45 (16), pp. 7060-7067; Lardon, L., Helias, A., Sialve, B., Steyer, J.P., Bernard, O., Life-Cycle Assessment of biodiesel production from microalgae (2009) Environ Sci Technol, 43 (17), pp. 6475-6481; Mendoza, J.L., Granados, M.R., Godos, I., Oxygen transfer and evolution in microalgal culture in open raceways (2013) Bioresour Technol, 137, pp. 188-195; Olivares, J., (2010), http://energy.gov/eere/bioenergy/downloads/national-alliance-advanced-biofuels-and-bioproducts-synopsisnaabb-final, (Last accessed December 2015)Jorquera, O., Kiperstok, A., Sales, E.A., Embiruçu, M., Ghirardi, M.L., Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors (2010) Bioresour Technol, 101 (4), pp. 1406-1413; Adesanya, V.O., Cadena, E., Scott, S.A., Smith, A.G., Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system (2014) Bioresour Technol, 163, pp. 343-355; Stephenson, A.L., Kazamia, E., Dennis, J.S., Life-Cycle assessment of potential algal biodiesel production in the United Kingdom: A comparison of raceways and air-lift tubular bioreactors (2010) Energ Fuel, 24 (7), pp. 4062-4077; Blanken, W., Cuaresma, M., Wijffels, R.H., Janssen, M., Cultivation of microalgae on artificial light comes at a cost (2013) Algal Res, 2 (4), pp. 333-340; (2015) The ABNR Process, , http://clearaswater.com/solution/process, (Last accessed March 2016); AstaReal, A.B., (2015), www.astareal.se/products, (Last accessed July 2015)Sevigne Itoiz, E., Fuentes-Grunewald, C., Gasol, C.M., Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant (2012) Biomass Bioenerg, 39, pp. 324-335; Milledge, J.J., Heaven, S., A review of the harvesting of micro-algae for biofuel production (2012) Rev Environ Sci Biotechnol, 12 (2), pp. 165-178; Weschler, M.K., Barr, W.J., Harper, W.F., Landis, A.E., Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock (2014) Bioresour Technol, 153, pp. 108-115; Adams, C., Godfrey, V., Wahlen, B., Seefeldt, L., Bugbee, B., Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae (2013) Bioresour Technol, 131, pp. 188-194; Grobbelaar, J., Algal nutrition-Mineral Nutrition (2003) Handbook of Microalgal Culture: Biotechnology and Applied Phycology, pp. 97-115. , Richmond A, ed. London, UK: Blackwell Science, 2004; Powell, N., Shilton, A.N., Pratt, S., Chisti, Y., Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds (2008) Environ Sci Technol, 42 (16), pp. 5958-5962; Mayers, J.J., Flynn, K.J., Shields, R.J., Influence of the N: P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp (2014) Bioresour Technol, 169, pp. 588-595; Razon, L.F., Tan, R.R., Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis (2011) Appl Energ, 88 (10), pp. 3507-3514; Pate, R., Klise, G., Wu, B., Resource demand implications for US algae biofuels production scale-up (2011) Appl Energ, 88 (10), pp. 3377-3388; Geider, R., La Roche, J., Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis (2002) Eur J Phycol, 37 (1), pp. 1-17; Prochazkova, G., Branyikova, I., Zachleder, V., Branyik, T., Effect of nutrient supply status on biomass composition of eukaryotic green microalgae (2014) J Appl Phycol, 26 (3), pp. 1359-1377; (2015) World Fertilizer Trends and Outlook to 2018, , www.fao.org/3/ai4324e.pdf, (Last accessed September 2015); Rosch, C., Skarka, J., Wegerer, N., Materials flow modeling of nutrient recycling in biodiesel production from microalgae (2012) Bioresour Technol, 107, pp. 191-199; Cai, T., Park, S.Y., Li, Y., Nutrient recovery from wastewater streams by microalgae: Status and prospects (2013) Renew Sustain Energ Rev, 19, pp. 360-369; Delrue, F., Lvarez-Diaz P, A., Fon-Sing, S., Fleury, G., Sassi, J.F., The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm (2016) Energies, 9 (3), p. 132; Handler, R.M., Canter, C.E., Kalnes, T.N., Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: Analysis of the prior literature and investigation of wide variance in predicted impacts (2012) Algal Res, 1 (1), pp. 83-92; Mayers, J.J., Albers, E., Flynn, K.J., An approaching global phosphorus crisis and microalgal biotechnology: A growing problem &strategies for effective use [presentation] (2015) Algal Biomass Summit 2015, , 2015 Sept. 29-Oct 2;Washington,DC; Grady, C.P.L.J., Daigger, G.T., Love, N.G., Filipe, C.D.M., (2011) Biological Wastewater Treatment, , Third Edition. Boca Raton, FL: CRC Press; Sturm, B.S.M., Lamer, S.L., An energy evaluation of coupling nutrient removal from wastewater with algal biomass production (2011) Appl Energ, 88 (10), pp. 3499-3506; Gonzalez-Fernandez, C., Molinuevo-Salces, B., Garcia-Gonzalez, M.C., Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry (2011) Bioresour Technol, 102 (2), pp. 960-966; Ndegwa, P.M., Hristov, A.N., Arogo, J., Sheffield, R.E., A review of ammonia emission mitigation techniques for concentrated animal feeding operations (2008) Biosystems Eng, 100 (4), pp. 453-469; Yuan, J., Kendall, A., Zhang, Y., Mass balance and life cycle assessment of biodiesel from microalgae incorporated with nutrient recycling options and technology uncertainties (2015) GCB Bioenerg, 7 (6), pp. 1245-1259; Collos, Y., Harrison, P.J., Acclimation and toxicity of high ammonium concentrations to unicellular algae (2014) Mar Pollut Bull, 80 (1-2), pp. 8-23; Johansson, O., Wedborg, M., The ammonia-ammonium equilibrium in seawater at temperatures between 5 and 25 C (1980) J Solut Chem, 9 (1), pp. 37-44; Yang, J., Xu, M., Zhang, X., Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance (2011) Bioresour Technol, 102 (1), pp. 159-165; Batan, L., Quinn, J., Willson, B., Bradley, T., Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae (2010) Environ Sci Technol, 44 (20), pp. 7975-7980; Resurreccion, E.P., Colosi, L.M., White, M.A., Clarens, A.F., Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach (2012) Bioresour Technol, 126, pp. 298-306; Liu, X., Saydah, B., Eranki, P., Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction (2013) Bioresour Technol, 148, pp. 163-171; Medeiros, D.L., Sales, E.A., Kiperstok, A., Energy production from microalgae biomass: Carbon footprint and energy balance (2014) J Clean Prod, 96, pp. 493-500; Guieysse, B., Bechet, Q., Shilton, A., Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions (2013) Bioresour Technol, 128, pp. 317-323; Cooney, M.J., Young, G., Pate, R., Bio-oil from photosynthetic microalgae: Case study (2011) Bioresour Technol, 102 (1), pp. 166-177; Chowdhury, R., Viamajala, S., Gerlach, R., Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration (2012) Bioresour Technol, 108, pp. 102-111; Ventura, J.-R., Yang, B., Lee, Y.-W., Lee, K., Jahng, D., Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion (2013) Bioresour Technol, 137, pp. 302-310; Frank, E.D., Han, J., Palou-Rivera, I., Elgowainy, A., Wang, M.Q., (2011) Life Cycle Analysis of Algal Lipid Fuels with the GREET Model, , https://greet.es.anl.gov/files/algal-lipid-fuels, (Last accessed June 2016); Zhang, T.Y., Yu, Y., Wu, Y.H., Hu, H.Y., Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp (2013) LX1 on Its Growth and Lipid Production. Bioresour Technol, 146, pp. 643-648; Erkelens, M., Ball, A.S., Lewis, D.M., The influences of the recycle process on the bacterial community in a pilot scale microalgae raceway pond (2014) Bioresour Technol, 157, pp. 364-367; Rodolfi, L., Zittelli, G.C., Barsanti, L., Rosati, G., Tredici, M.R., Growth medium recycling in Nannochloropsis sp (2003) Mass Cultivation. Biomol Eng, 20 (4-6), pp. 243-248; Gonzalez-Lopez, C.V., Ceron-Garcia, M.C., Fernandez-Sevilla, J.M., Medium recycling for Nannochloropsis gaditana cultures for aquaculture (2013) Bioresour Technol, 129, pp. 430-438; Gerardo, M.L., Oatley-Radcliffe, D.L., Lovitt, R.W., Integration of membrane technology in microalgae biorefineries (2014) J Memb Sci, 464, pp. 86-99; Kim, D.G., La, H.J., Ahn, C.Y., Park, Y.H., Oh, H.M., Harvest of Scenedesmus sp with bioflocculant and reuse of culture medium for subsequent high-density cultures (2011) Bioresour Technol, 102 (3), pp. 3163-3168; Rwehumbiza, V.M., Harrison, R., Thomsen, L., Alum-induced flocculation of preconcentrated Nannochloropsis salina: Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling (2012) Chem Eng J, 200-202, pp. 168-175; Fon Sing, S., Isdepsky, A., Borowitzka, M.A., Lewis, D.M., Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp in raceway ponds under increasing salinity: A novel protocol for commercial microalgal biomass production (2014) Bioresour Technol, 161, pp. 47-54; White, R.L., Ryan, R.A., Long-term cultivation of algae in open-raceway ponds: Lessons from the field (2015) Biotechnol, 11 (4), pp. 213-220; Penman, H.L., Natural evaporation from open water, bare soil and grass (1948) Proc R Soc A Math Phys Eng Sci, 193 (1032), pp. 120-145; Bechet, Q., Shilton, A., Park, J.B.K., Craggs, R.J., Guieysse, B., Universal temperature model for shallow algal ponds provides improved accuracy (2011) Environ Sci Technol, 45 (8), pp. 3702-3709; Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G., Simoes, M., Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept (2012) Renew Sustain Energy Rev, 16 (5), pp. 3043-3053; Vanden Hende, S., Vervaeren, H., Boon, N., Flue gas compounds and microalgae (Bio-) chemical interactions leading to biotechnological opportunities (2012) Biotechnol Adv, 30 (6), pp. 1405-1424; Negoro, M., Shioji, N., Miyamoto, K., Micira, Y., Growth of microalgae in high CO2 gas and effects of SOX and NOX (1991) Appl Biochem Biotechnol, 28-29 (1), pp. 877-886; Laws, E., (1990) Mass Culture of Algae Using Carbon Dioxide from Stack Gases [Dissertation], , Honolulu, HI: Hawaii University; Negoro, M., Hamasaki, A., Ikuta, Y., Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler (1993) Appl Biochem Biotechnol, 39-40 (1), pp. 643-653; Cheng, J., Yang, Z., Huang, Y., Improving growth rate of microalgae in a 1191m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant (2015) Bioresour Technol, 190, pp. 235-241; Rickman, M., Pellegrino, J., Hock, J., Shaw, S., Freeman, B., Life-cycle and technoeconomic analysis of utility-connected algae systems (2013) Algal Res, 2 (1), pp. 59-65; Last, G.V., Schmick, M.T., (2011) Identification and Selection of Major Carbon Dioxide Stream Compositions, , www.pnnl.gov/main/publications/external/technical_reports/PNNL-20493.pdf, (Last accessed June 2016); Olaizola, M., Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures (2003) Biotechnol Bioprocess Eng, 8 (6), pp. 360-367; Coleman, A.M., Wigmosta, M.S., Langholtz, M.H., National supply curves for algae biomass: Resource-based collocation [presentation] (2015) Algal Biomass Summit, , 2015 Sept. 29-Oct 2; Washington, DC; Soletto, D., Binaghi, L., Ferrari, L., Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor (2008) Biochem Eng J, 39 (2), pp. 369-375; Solovchenko, A., Solovchenko, O., Khozin-Goldberg, I., Probing the effects of high-light stress on pigment and lipid metabolism in nitrogen-starving microalgae by measuring chlorophyll fluorescence transients: Studies with a D5 desaturase mutant of Parietochloris incisa (Chlorophyta, Trebouxiophyceae) (2013) Algal Res, 2 (3), pp. 175-182; Douskova, I., Doucha, J., Livansky, K., Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs (2008) Appl Microbiol Biotechnol, 82 (1), pp. 179-185; (2006) Best Available Techniques Reference Document on Large Combustion Plants, , http://eippcb.jrc.ec.europa.eu/reference/BREF/lcp_bref_0706.pdf, (Last accessed January 2016); Lara-Gil, J.A., Lvarez, M.M.A., Pacheco, A., Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems (2013) J Appl Phycol, 26 (1), pp. 357-368; Stewart, J.J., Bianco, C.M., Miller, K.R., Coyne, K.J., The marine microalga, Heterosigma akashiwo, converts industrial waste gases into valuable biomass (2015) Front Energy Res, p. 3; Clarens, A.F., Nassau, H., Resurreccion, E.P., White, M.A., Colosi, L.M., Environmental impacts of algae-derived biodiesel and bioelectricity for transportation (2011) Environ Sci Technol, 45 (17), pp. 7554-7560; (2006) Environmental Impact of Solvent Scrubbing of CO2, , www.ieaghg.org/docs/General_Docs/Reports/2006-14EnvironmentalImpactofSolventScrubbingofCO2.pdf, (Last accessed February 2016); Duan, L., Chen, X., Yang, Y., Study on a novel process for CO2 compression and liquefaction integrated with the refrigeration process (2013) J Energy Res, 37 (12), pp. 1453-1464; Weidema, B.P., Bauer, C., Hischier, R., (2013) The Ecoinvent Database: Overview and Methodology, Data Quality Guideline for the Ecoinvent Database Version, , www.ecoinvent.org, (Last accessed July 2016); (2014) Table 5.6A Average Price of Electricity to Ultimate Customers by End-use Sector, , https://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a, by State, December 2015 and (last accessed March 2016); Klemeš, J.J., (2013) Handbook of Process Integration: Minimisation of Energy and Water Use, Waste and Emissions, , Cambridge, UK: Woodhead Publishing Ltd; Bosma, R., De Vree, J.H., Slegers, P.M., Design and construction of the microalgal pilot facility AlgaePARC (2014) Algal Res, 6, pp. 160-169; Sanchez, E., Ojeda, K., El-Halwagi, M., Kafarov, V., Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration (2011) Chem Eng J, 176-177, pp. 211-216; Ammar, Y., Joyce, S., Norman, R., Wang, Y., Roskilly, A.P., Low grade thermal energy sources and uses fromthe process industry in theUK (2012) Appl Energ, 89 (1), pp. 3-20; Berntsson, T., Asblad, A., (2015) Industrial Excess Heat Recovery-Technologies and Applications. Final report-Phase 1, , www.ieaindustry.org/ongoing-annexes/annex-15.html, (Last accessed March 2016); Broberg Viklund, S., Energy efficiency through industrial excess heat recovery-Policy impacts (2015) Energy Efficiency, 8 (1), pp. 19-35; Brueckner, S., Miro, L., Cabeza, L.F., Pehnt, M., Laevemann, E., Methods to estimate the industrial waste heat potential of regions-A categorization and literature review (2014) Renew Sustain Energ Rev, 38, pp. 164-171; Broberg Viklund, S., Johansson, M.T., Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction (2014) Energ Convers Manag, 77, pp. 369-379; Bechet, Q., Shilton, A., Fringer, O.B., Munoz, R., Guieysse, B., Mechanistic modeling of broth temperature in outdoor photobioreactors (2010) Environ Sci Technol, 44 (6), pp. 2197-2203; Li, W.K.W., Temperature adaptation in phytoplankton: Cellular and photosynthetic characteristics (1980) Primary Productivity in the Sea, 19, pp. 259-279. , Falkowski P, eds. New York: Springer US; Laamanen, C.A., Shang, H., Ross, G.M., Scott, J.A., A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates (2014) Energ Convers Manag, 88, pp. 476-483; Waller, P., Ryan, R., Kacira, M., Li, P., The algae raceway integrated design for optimal temperature management (2012) Biomass Bioenerg, 46, pp. 702-709; Huesemann, M.H., Edmundson, S.J., Wigmosta, M.S., Brown, L., Increasing annual microalgal biomass productivity through crop rotation: Characterization and modeling of winter and summer strains [presentation] (2015) Algal Biomass Summit 2015, , 2015 Sept. 29-Oct 2; Washington, DC; Smith, V.H., McBride, R.C., Shurin, J.B., Crop diversification can contribute to disease risk control in sustainable biofuels production (2015) Front Ecol Environ, 13 (10), pp. 561-567; Song, C., Liu, Q., Ji, N., Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration (2016) Bioresour Technol, 207, pp. 67-75; Acien, F.G., Fernandez, J.M., Magan, J.J., Molina, E., Production cost of a real microalgae production plant and strategies to reduce it (2012) Biotechnol Adv, 30 (6), pp. 1344-1353; Xu, L., Wim Brilman, D.W.F., Withag, J.A.M., Brem, G., Kersten, S., Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis (2011) Bioresour Technol, 102 (8), pp. 5113-5122; Dong, T., Knoshaug, E.P., Davis, R., Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts (2016) Algal Res; Laurens, L.M.L., Nagle, N., Davis, R., Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production (2015) Green Chem, 17 (2), pp. 1145-1158; Fagernas, L., Brammer, J., Wilen, C., Lauer, M., Verhoeff, F., Drying of biomass for second generation synfuel production (2010) Biomass Bioenerg, 34 (9), pp. 1267-1277; Aziz, M., Oda, T., Kashiwagi, T., Integration of energy-efficient drying in microalgae utilization based on enhanced process integration (2014) Energy, 70, pp. 307-316; Van Gemert, G.W., (2009) The Delta Dryer: Theoretical and Technological Development of An Energy-efficient Dryer for Sludge [Dissertation], , Delft, The Netherlands: Delft University of Technology

Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2016-12-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus
By organisation
SP – Sveriges Tekniska Forskningsinstitut
In the same journal
Industrial Biotechnology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 283 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0