Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Climate impact assessment in life cycle assessments of forest products: Implications of method choice for results and decision-making
RISE, SP – Sveriges Tekniska Forskningsinstitut.
RISE, SP – Sveriges Tekniska Forskningsinstitut.
RISE, SP – Sveriges Tekniska Forskningsinstitut.
RISE, SP – Sveriges Tekniska Forskningsinstitut.
Show others and affiliations
2016 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 116, 90-99 p.Article in journal (Refereed) Published
Abstract [en]

As life cycle assessments are often conducted to provide decision support, it is important that impact assessment methodology is consistent with the intended decision context. The currently most used climate impact assessment metric, the global warming potential, and how it is applied in life cycle assessments, has for example been criticised for insufficiently accounting for carbon sequestration, carbon stored in long-lived products and timing of emission. The aim of this study is to evaluate how practitioners assess the climate impact of forest products and the implications of method choice for results and decision-making. To identify current common practices, we reviewed climate impact assessment practices in 101 life cycle assessments of forest products. We then applied identified common practices in case studies comparing the climate impact of a forest-based and a non-forest-based fuel and building, respectively, and compared the outcomes with outcomes of applying alternative, non-established practices. Results indicate that current common practices exclude most of the dynamic features of carbon uptake and storage as well as the climate impact from indirect land use change, aerosols and changed albedo. The case studies demonstrate that the inclusion of such aspects could influence results considerably, both positively and negatively. Ignoring aspects could thus have important implications for the decision support. The product life cycle stages with greatest climate impact reduction potential might not be identified, product comparisons might favour the less preferable product and policy instruments might support the development and use of inefficient climate impact reduction strategies. © 2016 Elsevier Ltd.

Place, publisher, year, edition, pages
2016. Vol. 116, 90-99 p.
Keyword [en]
Building, Carbon, Fuel, Global warming, LCA, Wood, Buildings, Climate change, Decision making, Decision support systems, Forestry, Fuel storage, Fueling, Land use, Carbon sequestration, Climate impact assessment, Global warming potential, Impact assessment methodologies, Indirect land-use changes, Life Cycle Assessment (LCA), Product Life Cycle stages, Life cycle
National Category
Climate Research
Identifiers
URN: urn:nbn:se:ri:diva-27655DOI: 10.1016/j.jclepro.2016.01.009Scopus ID: 2-s2.0-84992255018OAI: oai:DiVA.org:ri-27655DiVA: diva2:1059485
Note

References: Berndes, G., Ahlgren, S., Börjesson, P., Cowie, A., Bioenergy and land use change - State of the art (2013) WIREs Energy Environ., 2013 (2), pp. 282-303; Brandão, M., Levasseur, A., Kirschbaum, M., Weidema, B., Cowie, A., Jørgensen, S., Hauschild, M., Chomkhamsri, K., Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting (2013) Int. J. Life Cycle Assess., 18, pp. 230-240; Brandão, M., Milà Canals, I.L., Clift, R., Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA (2011) Biomass Bioenerg., 35 (6), pp. 2323-2336; Bringezu, S., Ramesohl, S., Arnold, K., Fischedick, M., Von Geibler, J., Liedtke, C., Schütz, H., (2007) What We Know and What We Should Know Towards A Sustainable Biomass Strategy, , A Discussion Paper of the Wuppertal Institute, No. 163 Wuppertal Institute for Climate, Environment and Energy Wuppertal, Germany; Cherubini, F., Guest, G., Strømman, A.H., Bioenergy from forestry and changes in atmospheric CO2: Reconciling single stand and landscape level approaches (2013) J. Environ. Manag., 129, pp. 292-301; Cherubini, F., Bright, R.M., Strømman, A.H., Site-specific global warming potentials of biogenic CO2 for bioenergy: Contributions from carbon fluxes and albedo dynamics (2012) Environ. Res. Lett., 7 (4); Cherubini, F., Peters, G.P., Berntsen, T., Strømman, A.H., Hertwich, E., CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming (2011) GCB Bioenerg., 3 (5), pp. 413-426; Cherubini, F., Strømman, A.H., Life cycle assessment of bioenergy systems: State of the art and future challenges (2011) Bioresour. Technol., 102 (2), pp. 437-451; Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S., Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations (2009) Resour. Conserv. Recycl., 53 (8), pp. 434-447; Cintas, O., Berndes, G., Cowie, A.L., Egnell, G., Holmström, H., Ågren, G., The climate effect of increased forest bioenergy use in Sweden: Evaluation at different spatial and temporal scales (2015) WIREs Energy Environ.; Clancy, G., Fröling, M., Svanström, M., Insights from guiding material development for more sustainable products (2013) Int. J. Sust. Des., 2, pp. 149-166; Delucchi, M.A., (2003) A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, , Main Report Institute if Transportation Studies UC Davis, USA; Dornburg, V., Marland, G., Temporary storage of carbon in the biosphere does have value for climate change mitigation: A response to the paper by Miko Kirschbaum (2008) Mitig. Adapt. Strateg. Glob. Chang., 13 (3), pp. 211-217; Commission, E., (2010) International Reference Life Cycle Data System (ILCD) Handbook - General Guide for Life Cycle Assessment - Detailed Guidance, , first ed. Publications Office of the European Union Luxembourg; Garcia, R., Freire, A., Carbon footprint of particleboard: A comparison between ISO/TS 14067, GHG protocol, PAS 2050 and climate declaration (2014) J. Clean. Prod., 66, pp. 199-200; Goedkoop, M., Heijungs, R., Huijbergts, M., De Schryver, A., Struijs, J., Van Zelm, R., (2013) ReCiPe 2008, A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level, , Ruimte en Milieu, Ministerie van Volkshuisvesting Reimtelijke; Gunn, J.S., Ganz, D., Keeton, W., Biogenic vs geologic carbon emissions and forest biomass energy production (2012) GCB Bioenerg., 4, pp. 239-242; Gustavsson, L., Madlener, R., Hoen, H.-F., Jungmeier, G., Karjalainen, T., Klo, S., The role of wood material for greenhouse gas mitigation (2006) Mitig. Adapt. Strateg. Glob. Chang., 11, pp. 1097-1127; Heeren, N., Mutel, C.L., Steubing, B., Ostermeyer, Y., Wallbaum, H., Hellweg, S., Environmental impact of buildings - What matters? (2015) Environ. Sci. Technol., 49 (16), pp. 9832-9841; Helin, T., Salminen, H., Hynynen, J., Soimakallio, S., Huuskonen, S., Pingous, K., Global warming potentials of stemwood used for energy and materials in Southern Finland: Differentiation of impacts based on type of harvest and product lifetime (2015) GCB Bioenerg.; Helin, T., Sokka, L., Soimakallio, S., Pingoud, K., Pajula, T., Approaches for inclusion of forest carbon cycle in life cycle assessment - A review (2013) GCB Bioenerg., 5 (5), pp. 475-486; Hetherington, A.C., Borrion, A.L., Griffiths, O.G., McManus, M., Use of LCA as a development tool within early research: Challenges and issues across different sections (2014) Int. J. Life Cycle Assess., 19, pp. 130-143; Organisation for Standardization, I., (2006) Environmental Management - Life Cycle Assessment - Requirements and Guidelines (ISO 14044:2006); Johnson, E., Goodbye to carbon neutral: Getting biomass footprints right (2009) Environ. Impact Assess., 29, pp. 165-168; Jørgensen, S.V., Hauschild, M.Z., Nielsen, P.H., Assessment of urgent impacts of greenhouse gas emissions - The climate tipping potential (CTP) (2014) Int. J. Life Cycle Assess., 19 (4), pp. 919-930; Kilpeläinen, A., Alam, A., Strandman, H., Kellomäki, S., Life cycle assessment tool for estimating net CO2 exchange of forest production (2011) GCB Bioenerg., 3, pp. 461-471; Kirschbaum, M.U.F., Temporary carbon sequestration cannot prevent climate change (2006) Mitig. Adapt. Strateg. Glob. Chang., 11 (5-6), pp. 1151-1164; Levasseur, A., Lesage, P., Margni, M., Deschenes, L., Samson, B., Considering time in LCA: Dynamic LCA and its application to global warming impact assessments (2010) Environ. Sci. Technol., 44, pp. 3169-3174; Lippke, B., Oneil, E., Harrison, R., Skog, K., Gustavsson, L., Sathre, R., Life cycle impacts of forest management and wood utilization on carbon mitigation: Knowns and unknowns (2011) Carbon Manag., 2, pp. 303-333; Liski, J., Lehtonen, A., Palosuo, T., Peltoniemi, M., Eggers, T., Muukonen, P., Mäkipää, R., Carbon accumulation in Finland's forests 1922-2004 - An estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil (2006) Ann. For. Sci., 63, pp. 687-697; McKechnie, J., Colombo, S., Chen, J., Mabee, W., MacLean, H.L., Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels (2011) Environ. Sci. Technol., 45 (2), pp. 789-795; Michelsen, O., Cherubini, F., Strømman, A.H., Impact assessment of biodiversity and carbon pools from land use and land use changes in life cycle assessment, exemplified with forestry operations in Norway (2012) J. Ind. Ecol., 16 (2), pp. 231-242; Moura-Costa, P., Wilson, C., An equivalence factor between CO2 avoided emissions and sequestration - Description and applications in forestry (2000) Mitig. Adapt. Strateg. Glob. Chang., 5, pp. 51-60; Pawelzik, P., Carus, M., Hotchkiss, J., Narayan, R., Selke, S., Wellisch, M., Weiss, M., Patel, M.K., Critical aspects in the life cycle assessment (LCA) of bio-based materials - Reviewing methodologies and deriving recommendations (2013) Resour. Conserv. Recycl., 73, pp. 211-228; Perez-Garcia, J., Lippke, B., Comnick, J., Manriquez, C., An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results (2005) Wood Fiber Sci., 37, pp. 140-148; Petersen, A.K., Solberg, B., Environmental and economic impacts of substitution between wood products and alternative materials: A review of micro-level analyses from Norway and Sweden (2005) For. Policy Econ., 7 (3), pp. 249-259; Repo, A., Tuomi, M., Liski, J., Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues (2011) GCB Bioenerg., 3 (2), pp. 107-115; Sandin, G., Røyne, F., Berlin, J., Peters, G., Svanström, M., Allocation in LCAs of biorefinery products: Implications for results and decision making (2015) J. Clean. Prod., 93, pp. 213-221; Sandin, G., Clancy, G., Heimersson, S., Peters, G.M., Svanström, M., Ten Hoeve, M., Making the most of LCA in technical inter-organisational R&D projects (2014) J. Clean. Prod., 70, pp. 97-104; Sandin, G., Peters, G.M., Svanström, M., Life cycle assessment of construction materials: The influence of assumptions in end-of-life modeling (2014) Int. J. Life Cycle Assess., 19, pp. 723-731; Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Tun-Hsiang, Y., Use of U.S. Croplands for biofuels increases greenhouse gases through emissions from land-use change (2008) Science, 319 (5867), pp. 1238-1240; Sjølie, H.K., Solberg, B., Greenhouse gas emission impacts of use of Norwegian wood pellets: A sensitivity analysis (2011) Environ. Sci. Policy, 14 (8), pp. 1028-1040; Shine, K.P., Fuglestvedt, J.S., Hailemariam, K., Stuber, N., Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases (2005) Clim. Change, 68, pp. 281-302; Soimakallio, S., Cowie, A., Brandão, M., Finnveden, G., Ekvall, T., Erlandsson, M., Koponen, P., Karlsson, P.-E., Attributional life cycle assessment: Is a land-use baseline necessary? (2015) Int. J. Life Cycle Assess., 20, pp. 1364-1375; Spracklen, D.V., Bonn, B., Carslaw, K.S., Boreal forests, aerosols and the impacts on clouds and climate (2008) Philos. Trans. R. Soc. A, 366 (1885), pp. 4613-4626; Stephenson, A.L., Dupree, P., Scott, S.A., Dennis, J.S., The environmental and economic sustainability of potential bioethanol from willow in the UK (2010) Bioresour. Technol., 101 (24), pp. 9612-9623; Suh, S., Yang, Y., On the uncanny capabilities of consequential LCA (2014) Int. J. Life Cycle Assess., 19 (6), pp. 1179-1184; Ter-Mikaelian, M.T., Colombo, S.J., Chen, J., The burning question: Does forest bioenergy reduce carbon emissions? A review of common misconceptions about forest carbon accounting (2015) J. For., 113 (1), pp. 57-68; Vogtländer, J., Van Der Velden, N., Van Der Lugt, P., Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; Cases on wood and on bamboo (2014) Int. J. Life Cycle Assess., 19 (1), pp. 13-23; Wrage, N., Groeningen, J.W.V., Oenema, O., Baggs, E.M., A novel dual-isotope labelling method for distinguishing between soil sources of N2O (2005) Rapid Commun. Mass Spectrom., 19, pp. 3298-3306

Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2016-12-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus
By organisation
SP – Sveriges Tekniska Forskningsinstitut
In the same journal
Journal of Cleaner Production
Climate Research

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 151 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.26.0