Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microstructure of a granular amorphous silica ceramic synthesized by spark plasma sintering
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Food and Bioscience, Structure Design. University of South Australia, Australia.ORCID iD: 0000-0002-5956-9934
University of South Australia, Australia.
University College London, Australia.
University of South Australia, Australia; Monash University, Australia.
2016 (English)In: Journal of Microscopy, ISSN 0022-2720, E-ISSN 1365-2818, Vol. 264, no 3, p. 298-303Article in journal (Refereed) Published
Abstract [en]

We study the microstructure of a granular amorphous silica ceramic material synthesized by spark plasma sintering. Using monodisperse spherical silica particles as precursor, spark plasma sintering yields a dense granular material with distinct granule boundaries. We use selective etching to obtain nanoscopic pores along the granule borders. We interrogate this highly interesting material structure by combining scanning electron microscopy, X-ray computed nanotomography and simulations based on random close packed spherical particles. We determine the degree of anisotropy caused by the uni-axial force applied during sintering, and our analysis shows that our synthesis method provides a means to avoid significant granule growth and to fabricate a material with well-controlled microstructure.

Place, publisher, year, edition, pages
2016. Vol. 264, no 3, p. 298-303
Keywords [en]
Microstructure, nanoporous, scanning electron microscopy, sintering, X-ray computed tomography
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27584DOI: 10.1111/jmi.12442Scopus ID: 2-s2.0-84977534321OAI: oai:DiVA.org:ri-27584DiVA, id: diva2:1058234
Note

References: Aurenhammer, F., Voronoi diagrams: a survey of a fundamental geometric data structure (1991) ACM Comput. Surv, 23, pp. 345-405; Berryman, J.G., Random close packing of hard spheres and disks (1983) Phys. Rev. A, 27, pp. 1053-1061; Brandon, D., Kaplan, W.D., (2013) Microstructural Characterization of Materials, , &, Wiley, Chichester, UK; Breu, H., Gil, J., Kirkpatrick, D., Werman, M., Linear time Euclidean distance transform algorithms (1995) IEEE Trans. Pattern Anal. Mach. Intell, 17, pp. 529-533; Chaim, R., Densification mechanisms in spark plasma sintering of nanocrystalline ceramics (2007) Mat. Sci. Eng. A, 443, pp. 25-32; Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., Gauvin, R., CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users (2007) Scanning, 29, pp. 92-101; German, R.M., Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems (2010) Crit. Rev. Solid State Mater. Sci, 35, pp. 263-305; Jaeger, H.M., Nagel, S.R., Physics of the granular state (1992) Science, 255, pp. 1523-1531; Kang, S.-J.L., (2004) Sintering: Densification, Grain Growth and Microstructure, , Butterworth-Heinemann, Oxford, UK; Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., Optimization by simulated annealing (1983) Science, 220, pp. 671-680; Kraynik, A.M., Neilsen, M.K., Reinelt, D.A., Warren, W.E., Foam micromechanics: structure and rheology of foams, emulsions, and cellular solids (1999) Foams and Emulsions, pp. 259-286. , &, (ed. by, J.-F. Sadoc, N. Rivier, Springer, Dordrecht, The Netherlands; Kraynik, A.M., Reinelt, D.A., van Swol, F., Structure of random foam (2004) Phys. Rev. Lett, 93, p. 208301; Lautensack, C., Schladitz, K., Särkkä, A., Modeling the microstructure of sintered copper (2006) Proceedings of 6th International Conference on Stereology, Spatial Statistics and Stochastic Geometry, , &, In, June 2006, Prague; Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S., Markov chain Monte Carlo without likelihoods (2003) Proc. Natl. Acad. Sci, 100, pp. 15324-15328; Montminy, M.D., Tannenbaum, A.R., Macosko, C.W., The 3D structure of real polymer foams (2004) J. Colloid Interface Sci, 280, pp. 202-211; Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method (2006) J. Mater. Sci, 41, pp. 763-777; Nygren, M., Shen, Z., On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering (2003) Solid State Sci, 5, pp. 125-131; Omori, M., Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) (2000) Mat. Sci. Eng. A, 287, pp. 183-188; Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A., Feldman, M.W., Population growth of human Y chromosomes: a study of Y chromosome microsatellites (1999) Mol. Biol. Evol, 16, pp. 1791-1798; Ramond, L., Bernard-Granger, G., Addad, A., Guizard, C., Sintering of soda-lime glass microspheres using spark plasma sintering (2011) J. Am. Ceramic Soc, 94, pp. 2926-2932; Redenbach, C., Microstructure models for cellular materials (2009) Comp. Mater. Sci, 44, pp. 1397-1407; Shen, Z., Johnsson, M., Zhao, Z., Nygren, M., Spark plasma sintering of alumina (2002) J. Am. Ceram. Soc, 85, pp. 1921-1927; Song, C., Wang, P., Makse, H.A., A phase diagram for jammed matter (2008) Nature, 453, pp. 629-632; Tavaré, S., Balding, D.J., Griffiths, R.C., Donnelly, P., Inferring coalescence times from DNA sequence data (1997) Genetics, 145, pp. 505-518; Thomson, W., On the division of space with minimum partitional area (1887) Philos. Mag, 24, pp. 503-514; Torquato, S., (2002) Random Heterogeneous Materials: Microstructure and Macroscopic Properties, , Springer, New York, US; Torquato, S., Truskett, T.M., Debenedetti, P.G., Is random close packing of spheres well defined (2000) Phys. Rev. Lett, 84, pp. 2064-2067; Wang, C., Cheng, L., Zhao, Z., FEM analysis of the temperature and stress distribution in spark plasma sintering: modelling and experimental validation (2010) Comp. Mater. Sci, 49, pp. 351-362

Available from: 2016-12-20 Created: 2016-12-19 Last updated: 2019-08-13Bibliographically approved

Open Access in DiVA

fulltext(3255 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 3255 kBChecksum SHA-512
c247a4f4e7787a15a497c0ec2057f9caa8a571333adff03ad4cc80c3b4e8f0a5d000dcb960d5f331aad12aa9bb45a512c862a4f4269397c8c3a872bd82c9ddfe
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records BETA

Röding, Magnus

Search in DiVA

By author/editor
Röding, Magnus
By organisation
Structure Design
In the same journal
Journal of Microscopy
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7