The oxygen permeability properties of poly(ethylene terephthalate), low- and high-density polyethylenes and polypropylene coated with SiOx coating cold plasma were studied. A previously developed computer model for the calculation of transport properties in laminates containing very different layer thickness was fitted to experimental permeability data to obtain the oxygen transport properties of the SiOx coating. For the first time, to the best of our knowledge, it was possible to obtain the oxygen diffusivity and solubility of a SiOx coating on a polymer substrate. The effects of folding the laminates through 90° on the permeability properties of the SiOx coating were also investigated. The surface roughness of the substrates was obtained by atomic force microscopy and the morphology of the laminate surfaces was analysed by scanning electron microscopy. The oxygen diffusivity and solubility of a 45-nm-thick SiOx coating deposited on a 4000-fold thicker polypropylene substrate were 5X10-12 cm2 s-1 and 0.72 cm3 (STP) cm-3 atm-1, respectively. The diffusivity was approximately four orders of magnitude lower than that of the polymer substrate and, surprisingly, the solubility was higher than that of the polypropylene film. A hypothesis to explain these results is that the coating contained voids and, according to the permeability time lag, these were not continuous through the coating. The oxygen permeability of the coating increased with increasing substrate surface roughness, and was consequently lowest for poly(ethylene terephthalate). The folding operation initiated cracks in the coating, and the resulting increase in oxygen permeability was greater in the rougher substrates