Wetting of water, a 1 : 1 water/ethanol mixture and an aqueous dodecylbenzene sulfonic acid surfactant solution on hydrophobic and superhydrophobic surfaces were studied using confocal Raman microscopy. The superhydrophobic surfaces were prepared by immersion of a glass substrate in a silica particle/fluoropolymer formulation followed by silanization. Preparation of hydrophobic surfaces was done in the same way with the exception that the silica particles were excluded from the formulation. The hydrophobic and superhydrophobic surfaces were characterized with respect to surface roughness using AFM, and by contact angle measurements using different liquids. Confocal Raman microscopy measurements in a 1 : 1 water/ethanol mixture showed an enrichment of ethanol close to the superhydrophobic surface, which could not be observed for the hydrophobic surface. Unexpectedly, the Raman spectrum of a pure water film in close proximity to the superhydrophobic surface displayed some differences compared to that of bulk water and indicated a stronger hydrogenbonding close to the superhydrophobic surface. Evidence for capillary evaporation next to the superhydrophobic surface was also found, and this results in very long-range capillary attraction between one superhydrophobic surface and a hydrophobic colloidal probe as shown by AFM colloidal probe force measurements. Addition of a surfactant or ethanol suppresses capillary evaporation.
A2074