Biodegradation of single-walled carbon nanotubes by eosinophil peroxidaseShow others and affiliations
2013 (English)In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 9, no 16, p. 2721-2729Article in journal (Refereed) Published
Abstract [en]
Eosinophil peroxidase (EPO) is one of the major oxidant-producing enzymes during inflammatory states in the human lung. The degradation of single-walled carbon nanotubes (SWCNTs) upon incubation with human EPO and H2O 2 is reported. Biodegradation of SWCNTs is higher in the presence of NaBr, but neither EPO alone nor H2O2 alone caused the degradation of nanotubes. Molecular modeling reveals two binding sites for SWCNTs on EPO, one located at the proximal side (same side as the catalytic site) and the other on the distal side of EPO. The oxidized groups on SWCNTs in both cases are stabilized by electrostatic interactions with positively charged residues. Biodegradation of SWCNTs can also be executed in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. Biodegradation is proven by a range of methods including transmission electron microscopy, UV-visible-NIR spectroscopy, Raman spectroscopy, and confocal Raman imaging. Thus, human EPO (in vitro) and ex vivo activated eosinophils mediate biodegradation of SWCNTs: an observation that is relevant to pulmonary responses to these materials. Human eosinophil peroxidase (EPO) is able to degrade SWCNTs in vitro in the presence of H2O2. EPO is one of the major oxidant-generating enzymes present in human lungs during inflammatory states. The biodegradation of SWCNTs is evidenced also in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. These results are relevant to potential respiratory exposure to carbon nanotubes.
Place, publisher, year, edition, pages
2013. Vol. 9, no 16, p. 2721-2729
Keywords [en]
biodegradable materials, carbon nanotubes, eosinophil peroxidase, molecular modeling
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27474DOI: 10.1002/smll.201202508Scopus ID: 2-s2.0-85052429800OAI: oai:DiVA.org:ri-27474DiVA, id: diva2:1054479
Note
A3202
2016-12-082016-12-082020-12-01Bibliographically approved