Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of different methods to calibrate torsional spring constant and photodetector for atomic force microscopy friction measurements in air and liquid
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet. KTH Royal Institute of Technology, Sweden.
Uppsala Universitet.
2007 (English)In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 78, no 9, p. 093702/1-093702/8Article in journal (Refereed)
Abstract [en]

A number of atomic force microscopy cantilevers have been exhaustively calibrated by a number of techniques to obtain both normal and frictional force constants to evaluate the relative accuracy of the different methods. These were of either direct or indirect character—the latter relies on cantilever resonant frequencies. The so-called Sader [Rev. Sci. Instrum. 70, 3967 (1999)] and Cleveland [Rev. Sci. Instrum. 64, 403 (1993)] techniques are compared for the normal force constant calibration and while agreement was good, a systematic difference was observed. For the torsional force constants, all the techniques displayed a certain scatter but the agreement was highly encouraging. By far the simplest technique is that of Sader, and it is suggested in view of this validation that this method should be generally adopted. The issue of the photodetector calibration is also addressed since this is necessary to obtain the cantilever twist from which the torsional force is calculated. Here a technique of obtaining the torsional photodetector sensitivity by combining the direct and indirect methods is proposed. Direct calibration measurements were conducted in liquid as well as air, and a conversion factor was obtained showing that quantitative friction measurements in liquid are equally feasible provided the correct calibration is performed.

Place, publisher, year, edition, pages
2007. Vol. 78, no 9, p. 093702/1-093702/8
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27458OAI: oai:DiVA.org:ri-27458DiVA, id: diva2:1054463
Note
A1898Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Review of Scientific Instruments
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf